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Spin-orbit fields in asymmetric (001)-oriented GaAs/AlxGa1−xAs quantum wells
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We measure simultaneously the in-plane electron g factor and spin-relaxation rate in a series of undoped
inversion-asymmetric (001)-oriented GaAs/AlGaAs quantum wells by spin-quantum beat spectroscopy. In
combination the two quantities reveal the absolute values of both the Rashba and the Dresselhaus coefficients
and prove that the Rashba coefficient can be negligibly small despite huge conduction-band potential gradients
which break the inversion symmetry. The negligible Rashba coefficient is a consequence of the “isomorphism”
of conduction- and valence-band potentials in quantum systems where the asymmetry is solely produced by alloy
variations.
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Symmetry is a thread which runs through all of physics, and
symmetry reduction discloses basic physical principles. We
employ crystallographically engineered symmetry reduction
to study the intricate effects of spin-orbit interaction on the
electron spin in semiconductor nanostructures. Symmetry
reduction is an especially powerful tool in semiconduc-
tor physics because the variety of crystallographic direc-
tions combined with band-gap engineering allows enormous
freedom.

The interplay between structure, symmetry, and electron
spin in semiconductors directly affects the spin-relaxation rate
�s and the effective electron Landé factor g. Early studies of �s

and g focused on bulk zinc-blende material where both entities
are isotropic.1 Subsequently, the reduction in symmetry from
Td to D2d symmetry in symmetrical (001)-oriented quantum
wells (QWs) was shown to give rise to anisotropy between the
in-plane (x,y) and the out-of-plane (z) directions.2,3 Further
reduction in symmetry to C2v is achieved in (001) quantum
wells by removing the mirror symmetry of the quantum well
potential and allows an in-plane, twofold symmetric anisotropy
of both �s (Ref. 4) and g.5

Fundamentally, �s and g are both determined by spin-orbit
interaction but the basic mechanisms for their anisotropies are
quite different. Theoretically the in-plane anisotropy of g is
proportional to the asymmetry of the electron wave function
in the z direction with the proportionality constant given by the
Dresselhaus or bulk inversion asymmetry (BIA) spin-splitting
coefficient γ .5,6 In contrast, �s is in many cases dominated by
the Dyakonov-Perel (DP) spin-relaxation mechanism and the
related in-plane anisotropy depends on the ratio (α/β) of the
Rashba structural inversion asymmetry (SIA) to the BIA spin
splitting.4 The SIA component is determined in a rather subtle
way by the asymmetry of the structure along the z direction.7,8

In this work, we determine the absolute value of both the
Rashba and Dresselhaus coefficients for a series of quantum
well structures by simultaneously measuring the in-plane
anisotropy of �s and g by spin quantum beat spectroscopy.9

The specially designed undoped (001) quantum well samples,
with reduced C2v symmetry but without external electric fields,
illustrate clearly the different origins of the two anisotropies
as they possess a strong anisotropy of g and nearly negligible
anisotropy of �s .

Anisotropies of �s and g have been measured previously
in symmetrically grown quantum wells in an external electric
field,10,11 but the decisive simultaneous evaluation of Dressel-
haus and Rashba components has not been carried out so far.
Hanle measurements in undoped asymmetric quantum wells
without an applied electric field have revealed a strong in-plane
anisotropy of the Hanle depolarization curve,12 but such
measurements do not distinguish between the anisotropies of
�s and g.13 Recently, Ganichev and co-workers introduced
a seminal technique that uses the angular distribution of
the spin-galvanic effect and therewith measured the ratio of
the Rashba and Dresselhaus coefficients in doped quantum
wells.14,15 Salis and co-workers developed a technique that in
principle yields the absolute values of the coefficients in doped
structures by optically monitoring the angular dependence of
the electrons’ spin precession.16 However, screening effects
can produce an uncertainty in the measured values.17

We first summarize the theoretical mechanisms for g and �s

anisotropy.4,5 For g a small magnetic field in the x direction Bx

deflects the rapid zero-point motion of an electron quantized
in the z direction and yields a change of momentum in the
y direction. This additional momentum δpy changes the
effective Rashba �R and Dresselhaus �D precession vectors
which read for (001) quantum wells in zinc-blende crystals

�R(p) = α/h̄2

⎛
⎝ py

−px

0

⎞
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⎛
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⎞
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where α and β are coefficients and px,y,z are the components
of the electron momentum. Inspection of Eq. (1) shows that
�R converts δpy into an additional magnetic field which is
parallel to the external magnetic field Bx and thereby alters
the diagonal component of the g tensor (gxx = gyy). By
contrast, �D converts δpy to an additional magnetic field in the
y direction, i.e., perpendicular to Bx, and thereby generates an
off-diagonal component gxy . A rigorous theoretical treatment
yields5

gxy = gyx = (2γ e/h̄3μB)
(〈
p2

z

〉 〈z〉 − 〈
p2

z z
〉)

, (2)

where μB is the Bohr magneton and 〈 〉 represents an
expectation value for the electron wave function. The two
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terms in Eq. (2) cancel and gxy vanishes if the electron wave
function is symmetric. The anisotropy of the g tensor is thus
proportional to the Dresselhaus coefficient γ and determined
by asymmetry of the electron wave function, which may be
induced by asymmetry of the confining (conduction band)
potential for the electrons. The effective g factor for magnetic
field oriented at angle φ to the (100) axis in the quantum well
plane is given by

g(φ) = −
√

g2
xx + g2

xy + 2gxxgxy sin(2φ). (3)

For the spin relaxation, which is dominated by the DP
mechanism, the rate in the quantum well plane �

xy
s (φ)

is proportional to 〈�2〉 where � = �D + �R. It will be
anisotropic as a result of interference of the components and
is given by4

�xy
s (φ) = C

2
[α2 + β2 + 2αβ sin(2φ)], (4)

where C is a constant which depends on the in-plane electron
momentum relaxation time. Thus the spin-relaxation rate
anisotropy gives the ratio α/β, where β = 〈pz〉2 γ /h̄2.

Experimentally, we measure the electron-spin-relaxation
rate along the growth direction (z) for a magnetic field applied
in the quantum well plane. The magnetic field causes rapid
Larmor precession of the electron spins and the measured
relaxation rate is given by the average of �z

s = C(α2 + β2)
and �

xy
s (φ) (Ref. 11):

�s(φ) = 1

2

[
�z

s + �xy
s (φ)

] = D

[
1 +

(
α

β

)2

+ 2α

3β
sin(2φ)

]
,

(5)

where D = 3Cβ2/4. Therefore measurement of both
anisotropies yields simultaneously the absolute values of α

and β.
The samples are four molecular beam epitaxy grown, (001)-

oriented GaAs/AlGaAs multiple quantum wells with varying
asymmetry. Sample A comprises five repeats of a 12-nm
Al0.4Ga0.6As barrier, an 8-nm GaAs quantum well followed
by a 30-nm alloy layer where the aluminium concentration is
varied linearly from 0.04 to 0.4. Samples B–D are equivalent
structures but the one-sided potential gradient is in the quantum
well and has been grown as a digital alloy with conduction-
band gradients equivalent to an electric field of 100 kV/cm
(sample B), 50 kV/cm (sample C), and 25 kV/cm (sample D).
Figure 1 shows the calculated n = 1 electron states for samples
A and B obtained by numerical solution of the Schrödinger
equation. The calculated confinement energies for electrons in
samples A–D are 34, 91, 61, and 37 meV, respectively.

The samples are mounted on a rotation stage in a liquid-
helium flow cryostat in a superconducting magnet with the
magnetic field oriented in Voigt geometry. The rotation
axis corresponds to the growth axis of the sample and is
parallel to the direction of excitation. Spin oriented electrons
are optically created by circularly polarized ps pulses from
a mode-locked Ti:sapphire laser with a repetition rate of
80 MHz, a laser wavelength of 740 nm, and a pulse intensity
yielding excitation density ≈2 × 1010 cm−2. After excitation
the carrier momentum distribution rapidly thermalizes by
emission of phonons and scattering with other carriers and
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FIG. 1. (Color online) Conduction-band potential profile and
numerical calculated electron wave function for the n = 1 states for
(a) sample A and (b) sample B. (c) The measured spin quantum
beats at 125 K for sample A for 3 T in-plane magnetic field clearly
showing the different electron g factors for B‖[110] and [11̄0] and
similar spin-relaxation times.

the holes lose their spin orientation within the momentum
relaxation time due to strong valence-band mixing and
k-dependent spin splitting. The photo-luminescence (PL) is
spectrally and temporally resolved by a spectrometer and a
synchroscan streak camera with two-dimensional readout with
a resolution of 0.5 nm and 8 ps, respectively. The degree
of circular polarization of the PL, which is proportional to
the electron-spin polarization, is measured by a switchable
liquid-crystal retarder and a polarizer.

Figure 1(c) depicts the time evolution of the degree of
circular polarization for sample A at 3 T and 125 K for an
in-plane magnetic field B along [110] and [11̄0] directions.
The observed oscillations are electron-spin quantum beats,
the frequency being ωL = gμBh̄−1B, and so are a direct
measure of g for the particular magnetic-field direction.9

Measurements of beats in 〈Sz〉 in this way do not yield the
sign of g but a comparison with previous measurements on
symmetric QWs identifies that g is negative for samples A, C,
and D and positive for sample B.10,18 The two clearly distinct
oscillation frequencies in Fig. 1(c) directly demonstrate the
in-plane g anisotropy whereas the nearly identical decay
of the two polarization transients indicate that �s is nearly
isotropic.

Figure 2 shows in more detail the dependence of g and �s

on the direction of the magnetic field in samples A and B.
The black (red online) solid curves in Fig. 2 depict fits of the
anisotropy of g using Eq. (3), which directly yield both gxx and
gxy . The diagonal components of the g tensor gxx = gyy have
been previously investigated in symmetrical quantum wells
where the dependence on well width, i.e., confinement energy
and barrier penetration, is well described by k · p theory.18,19

The solid squares in Fig. 3(a) show gxx for all four samples,
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FIG. 2. (Color online) Extracted spin-relaxation rate and electron
g factor for different magnetic-field orientations from fits to the spin
quantum beat measurements for (a) sample A at 125 K and (b) sample
B at 25 K.

confirming a similar strong dependence of gxx on confinement
energy for asymmetric QWs. The open squares in Fig. 3(a)
show gxy and these values yield, by Eq. (2), the dependence
of the Dresselhaus spin splitting constant γ on confinement
energy [solid dots in Fig. 3(b)]. The excellent agreement
with data from Ref. 20 illustrates clearly that gxy provides
an accurate measure of γ in asymmetric (001) quantum wells.
The remaining deviations of γ from the trend probably result
from differences between the actual and the nominal sample
structures which lead to uncertainties in the calculation of the
wave-function asymmetry. Theoretical analysis of the decrease
of γ with confinement energy is beyond the scope of this paper.
Nonetheless, such a trend is expected from k · p theory and has
similar origin to the change of gxx with confinement energy in
Fig. 3(a).7,20

Next, we study in detail the anisotropy of the spin-relaxation
rate. The open circles in Figs. 2(a) and 2(b) depict �s(φ) for
samples A and B, respectively, and the gray solid curves are
fits according to Eq. (5). Additional temperature- and density-
dependent measurements confirm that the DP spin-relaxation
mechanism dominates �s . The measurements clearly show
that there is almost no in-plane anisotropy of �s and therefore
α is close to zero even though the potential gradients in both
samples are large (>90 kV/cm).

Figure 4 compares α in our samples (solid circles) with
previous experiments in external and internal (Hartree) electric
fields (open circles).21,22 The comparison of the measurements
clearly show that the Rashba spin splitting in AlGaAs
heterostructures is large even for a modest external (or internal)
electric field, but almost negligibly small in the case of
asymmetries produced by alloy variation. Although allowed
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FIG. 3. (Color online) (a)Variation in gxx (solid squares) and gxy

(open squares) with confinement energy for samples B and C (5–25 K)
and sample A (25 K) (gray diamonds). (b) Experimental values of the
Dresselhaus spin splitting constant against confinement energy (solid
circles); open circles correspond to data from Ref. 20.

to be nonzero by the C2v symmetry of the samples, the
values of α that are required to fit the present data are zero
within experimental uncertainties; they show both positive
and negative values with no clear trend and the value of α/β

is in all cases less than 0.1. The measurements push down
by an order of magnitude the previous upper limit of Rashba
spin splitting observed in samples with asymmetry from alloy
variation.8,23 The small values of α are a direct consequence
of the isomorphous band edges, that is, the conduction- and
valence-band potentials are related by a constant factor. This
is due to the fact that the expectation value of the effective
electric field always vanishes in the conduction band due
to Ehrenfest’s theorem,7 and in isomorphous structures, as
illustrated in the right-hand panel of Fig. 4, it will also vanish in
the valence band, and it is the latter which determines the spin
splitting.

In conclusion, we have determined simultaneously the
absolute values for the Dresselhaus and the Rashba spin-
orbit interaction in undoped low-symmetry (001) quantum
wells. All samples show a distinctive anisotropy of the
electron g factor but essentially isotropic spin-relaxation rates.
This difference highlights the different origins of the two
phenomena; the first is a measure of the conduction electron
wave-function asymmetry and the latter is a measure of the
expectation value of the valence-band potential on conduction-
band states. Although a one-sided gradient of the conduction
and/or valence band leads in general to a finite Rashba
spin-orbit interaction, the experiment proves that isomorphism
of the valence and conduction band in GaAs/AlGaAs quantum
wells proscribe a sizable, gradient-induced Rashba spin-orbit
splitting.
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FIG. 4. (Color online) Extracted values of the Rashba spin-orbit constant vs conduction-band potential gradient for samples A–D (solid
circles). The open circles show values for a built-in Hartree electric field (Ref. 21) of ∼15 kV/cm in an n-modulation doped structure and for
an externally applied electric field of 60 kV/cm in an undoped (110)-oriented multiple quantum well sample (Ref. 22). Right and left panels
show schematic potential profiles and electron probability density (middle) and effective electric field for conduction (top) and valence bands
(bottom) (after Ref. 7). For an “isomorphous” structure (right panel) the expectation value of the valence-band electric field will vanish but not
for a “nonisomorphous” structure (left panel), giving zero (finite) SIA spin splitting for the former (latter) (Ref. 8).
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