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A residual-based error estimator and mesh adaptivity for the time
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In this work, local mesh adaptivity for the time harmonic Maxwell equations is studied. The main purpose is to apply a
known a posteriori residual-based error estimator from the literature and to investigate its performance for a Y-beam splitter
setting. This configuration is an important prototype for the design of optical systems within the excellence cluster PhoenixD.
Specifically, the branching region is of interest and requires a high accuracy of the numerical simulation. One numerical
example shows the performance of our approach.
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1 Introduction

The Maxwell equations are well known for describing electromagnetic phenomena [5, 6]. One field of current interest are
optical technologies and the design of novel optical systems as for instance Y -splitters [8]. However, the branching region
of the Y -splitter requires in numerical approximations a high accuracy of the solution. For cost-complexity reasons, error-
controlled local mesh adaptivity is a tool at hand. In this work, we concentrate on a re-implementation of a residual-based
error estimator presented in [4]; for early rigorous work we refer also to [9]. To this end, for the discretization Nédélec finite
elements are employed, e.g., [7], and the numerical solution strategy is based on a domain decomposition method [3] with our
own results provided in [2]. The implementation is done in the open-source finite element software deal.II [1].

2 Time harmonic Maxwell equations

Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded domain with the sufficiently smooth boundary Γ = Γ∞∪Γinc. Find E ∈ H (curl, Ω) :=
{v ∈ L2(Ω), curl (v) ∈ L2(Ω)} such that





curl
(
µ−1curl (E)

)
− ω2E = 0 in Ω

µ−1γt (curl (E))− iωγT (E) = 0 on Γ∞

γT (E) = γT
(
Einc

)
on Γinc

, (1)

where Einc : Rd → Cd, d ∈ {2, 3} is the incident field. Furthermore we define the traces γt (v) = n × v and γT (v) =
n×(v×n) where n denotes the normal to Ω. We define ω = ϵ 2πλ , where λ > 0 is the wave length, ϵ is the relative permittivity
and µ is the relative permeability. For a more detailed description see [2, 7].

3 Discretization and adaptive mesh refinement

Problem (1) is discretized by means of the h-version of the finite element method with Nedelec elements of a fixed polynomial
degree p = 2 on adaptively refined quadrilateral/hexehedral meshes with hanging nodes. To compute the error between the
continuous solution E and the finite element approximation Eh, we concentrate on a residual-based strategy, estimating a
global-norm error of the form ∥E − Eh∥. The resulting residual-based a posteriori error estimator is denoted by η(Eh) and
which can be localized to single mesh elements K of the governing triangulation. Following [4], we specific form of localized
indicators reads

ηK(Eh)
2 = ηR,K(Eh)

2 + ηJ,K(Eh)
2. (2)

As usual, these indicators consists of two parts: an element-based residual term and face terms, respectively:

ηR,K(Eh)
2 :=

h2
K

p2

(∥∥curl
(
µ−1curl (Eh)

)
− ω2Eh − s

∥∥2
L2(K)

+
∥∥div

(
ω2Eh

)∥∥2
L2(K)

)
,

ηJ,K(Eh)
2 :=

1

2

∑

f ∈F

hf

p

(∥∥[γT
(
µ−1curl (Eh)

)]∥∥2
L2(f)

+
∥∥[nf ·

(
ω2Eh + s

)]∥∥2
L2(f)

)
,
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2 of 2 Section 18: Numerical methods of differential equations

where K denotes the current element with diameter hK and f denotes element faces with diameter hf . Moreover, nf denotes
the normal vector of f and s denotes the right hand side of the weak form.

4 Numerical results

In this section, we realize the previously presented a posteriori error estimator using a Y -beam splitter configuration. There-
fore, we consider the Y -beam splitter shown in figure 1, which is made out of a material with the refrective index n = 1.4906
and is surrounded by air nair = 1.0 and the wavelength λ = 660 nm was used.

Fig. 1: On the left side, the intensity plot of the x−y plane of the Y -beam splitter is shown. There, the red lines mark the interfaces between
the different domains. On the right side, the intensity at the output is visualized. The surrounding air is displayed in dark color.

One major benefit of the combination of domain decomposition and adaptive grid refinement is that the first iteration steps
of the domain decomposition method can be done on a coarse grid and only in the last steps, the mesh will be refinened
adaptively, therefore speeding up the computations. As hypothesized, specifically the splitting region is adaptivitely refined,
which is however driven automatically by the residual-based error estimator.
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