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1. Introduction

The fused deposition modeling (FDM) is a popular 
manufacturing process for rapid prototyping, small batches, and 
customized mass production with thermoplastics. To prepare a 
3D-CAD part for the deposition process, the part has to be 
converted in a format that describes the outer surface, such as 
the STL format. At the next process step a software cuts the 
surface model in defined layers with a description of each layer 
infill and generate a machine-readable code such as G-code. 
Within this process, the deposition parameters such as layer 
thickness, layer infill pattern, print velocity or line width are 
defined. Finally, the FDM-printer uses the G-Code to form the 
3D object. A thermoplastic material, provided as a filament, is 
melted up by the print head, extruded through a fine nozzle and 

laid up line by line to form a layer in the X-Y plane. After 
solidification, the Z-axes moves the value of the layer thickness 
and the next layer will be deposited. After additional layers are 
deposited on each other, the 3D object is formed [1]. 

LTW is based on the optical transmittance of thermoplastic 
material for near-infrared radiation. For joining two parts, the 
radiation has to pass through the transparent part to reach the 
surface of the second part, which absorbs the radiation. After 
absorbing, the optical energy is transformed into thermal 
energy. Heat conduction transfers the heat to the transparent 
part, so both parts melt at their interface. After cooling and 
solidification, the two parts form a bond. For the heat 
conduction a good surface contact is necessary, which requires 
a constant joining pressure along the weld seam and a smooth 
surface at the parts’ interface [2]. Kuklik et al., 2019, 
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Abstract

Laser transmission welding (LTW) is a known technique to join conventionally produced thermoplastic parts, e.g. injected molded parts. When 
using LTW for additively manufactured parts (usually prototypes, small series), this technique has to be evolved to overcome the difficulties in 
the part composition resulted in the additive manufacturing process itself.
In this paper, a method is presented to enhance the weld seam quality of laser welded additively manufactured parts assisted by a neural network-
based expert system. To validate the expert system, specimens are additively manufactured from polylactide. The parameters of the additive 
manufacturing process, the transmissivity, and the LTW process parameters are used to predict the shear tensile force with the neural network. 
The transparent samples are welded to black absorbent samples in overlap configuration and shear tensile tests are performed. In this work, the 
prediction of the shear tensile force with an accuracy of 88.1% of the neuronal network based expert system is demonstrated.
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demonstrated a fundamental study of LTW for additively 
manufactured parts. They investigated the influence of additive 
manufacturing process parameters on the transmissivity as well 
as the weldability of natural and black polylactide parts. For the 
highest weld seam strength, an energy per unit length of 4.0 
J/mm at a weld velocity of 2.5 mm/s was recommended
applying contour welding. Cavities were observed in cross 
sections of the weld seams. The authors suggested that voids 
from the additively manufacturing process and the surface 
roughness resulted in small gaps between the parts causing 
these cavities [3]. Vazques-Martinez et al., 2020, investigated a 
laser welding process with a pulsed fiber laser system and a 
large welding area of 5 x 5 mm². The authors also observed the 
formation of gaps and cavities between the additively 
manufactured components and described that a high energy of 
the laser pulses resulted in shrinking marks on the upper surface 
of the transparent part. They assumed that the high energy 
density of the focused beam leads to a melting of the transparent 
part at the point of entry and thus to the collapse of the upper 
surface [4]. Kuklik et al. demonstrated in 2020, that the cavities 
inside the weld seam of laser welded FDM components could 
be avoided by using a bar of extra material on top of the 
absorbent part. During the welding process, the bar melts down 
and provides an extra amount of material in order to fill the 
voids. This resulted in weld seams without cavities [5]. In 2021, 
Kuklik et al., changed the additive manufacturing parameters in 
a fractional screening for design of experiments in order to 
investigate the influence of these parameters on the 
transmissivity. The authors assumed that the change of the 
additive manufacturing parameters influences the 
transmissivity and scattering behavior and this leads to a change 
of the weld seam width [6].

Developing an LTW process for thermoplastics is often 
combined with high cost and high number of experiments to 
optimize the welding parameters laser power and feed rate. 
Therefore, in recent years, mathematic models, finite element 
method, and artificial neuronal networks were investigated in 
order to reduce the numbers of experiments. In 2011, Acherjee 
et al. used different neuronal network architectures to predict 
the weld seam strength and weld seam width for LTW of acrylic 
polymers and compared the results to linear and polynomial 
models. For the data set used, the neuronal network shows a 
better prediction than the mathematic models. The mean 
prediction error for the best neuronal network was 4.4% [7]. 
Acherjee also compared in 2019 the prediction of a neuronal 
network to the simulation using the finite element method for 
the weld pool dimensions in the LTW process. The author 
assumed that the sequential integration of both the simulation 
with the finite element method and the prediction with a 
neuronal network could minimize experimental effort to save 
time and cost [8]. In 2022, Kuklik et al. used a neuronal network 
to predict the transmissivity of additively manufactured 
components based on the manufacturing parameters. The 
accuracy of the used neuronal network was 87.8% [9].

2. Experimental Setup

For the investigation of LTW of additive manufactured 
components, samples were manufactured with an Ultimaker 
FDM desktop printer of the 3rd generation. This printer has a 
heated build plate and a resolution of 12.5 µm in the X-Y plane 
and 2.5 µm in Z direction. The used nozzle has a diameter of 
0.4 mm. 

Table 1. Manufacturing parameters for FDM parts to investigate the 
transmissivity of additively manufactured components.

Manufacturing 
parameter

Levels of the experimental design Reference
“fast” 
profile- O +

Sample thickness 1.5 mm 2.25 mm 2.5 mm -

Layer height 0.125 mm 0.15 mm 0.225 mm 0.2 mm

Line width 0.325 mm 0.35 mm 0.4 mm 0.35 mm

The material of the transparent part and the absorbent part is 
polylactide in transparent and black, respectively. The software 
Cura from Ultimaker was used for slicing of the CAD models. 
This software provides default profiles for the process 
parameters. The “fast” profile can be used for faster 
manufacturing by reducing the resolution of the parts. With the 
default profiles “fine” and “extra fine” the layer height and the 
printing velocity are reduced to achieve better printing results 
in complex structures. To minimize the production time the 
laser absorbent samples were sliced with the “fast” profile of 
Cura. In order to reduce cavities inside the weld seam, a bar of 
extra material was added on top of the absorbent part [5]. The 
manufacturing parameters sample thickness, layer height and 
line width for the transparent parts were changed on three levels 
(“+”, “O” and “-“) as shown in table 1 in order to vary the 
transmissivity. Twenty sets of parameters were formed from 
the manufacturing parameters in table 1 and 16 specimens were 
produced of each set for the laser welding experiments, (cf. 
[9]). The samples had a dimension of 50 mm length and 25 mm 
width. A diode laser with a maximum power of 300 W and an 
emission wavelength of 940 nm was used to weld the samples. 
The laser beam was guided with an optical fiber to a scanner 
optic. This generated a focal diameter of 2 mm and maximum 
scanning speeds up to 5 m/s. To fix the alignment and generate 
a clamping pressure for the welding, the parts were pressed 
together between a glass plate and by a pneumatic cylinder.
Fig. 1 shows the experimental setup. The samples had an 
overlap of 12.5 mm and were welded together with a scanning 
speed of 4 mm/s and laser powers from 8 W to 15 W. An 
artificial neuronal network (ANN) was used to predict the shear 
tensile force of the welded and tested parts. The ANN has eight 
input variables: material, layer infill, sample thickness, layer 
height, line width, transmissivity, welding speed, and welding 
power. Furthermore, it contains two hidden layers with in total 
eight neurons and the shear tensile force as the output variable. 
The ANN was trained in a supervised learning strategy. For the 
activation of a neuron, a hyperbolic tangent function was used.
The weights of the neurons were optimized with the stochastic
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gradient decent solver. The development of the ANN was done
in a preparatory work.

Fig. 1. Experimental set up for the laser welding experiments.

3. Results and discussion

The transparency of the samples was analyzed with a 
spectrometer Lambda 1050 from Perkin Elmer. The 
spectrometer measures in range of 200 nm to 3000 nm with a 
resolution up to 0.1 nm. To collect all the transmitted light an 
integrating sphere was used for the detection. The 
transmissivity of the samples were between 45% – 75% with a 
standard deviation for the additive manufacturing parameter set 
between of 2% – 4.3%. The transparent parts were welded in 
overlap configuration to the black samples for lap shear tests in 
order to study the influence of welding parameters on the 
resulting weld seam strength. The welding was performed with 
laser powers taking into account the transmissivity. 

The samples with a high transmissivity were welded with 
less power in the range of 8 W – 11 W to avoid decomposition. 
Samples with low transmissivity were welded with higher 
power between 11 W – 15 W, because a lower power was not 
sufficient to generate a continuous weld seam. For statistical 
validation, each experiment was performed four times. Overall, 
320 samples were welded with 80 different setups for the 
additively manufacturing and welding parameters. Fig. 2 shows 
the maximum shear tensile force of the lap shear tests with 
respect to the transmissivity of the transparent samples. The 
applied laser power during the welding is marked with the 
different colors. The shear tensile forces of the lap shear tests 
varied between 390 N – 1144 N. The standard deviation of the 
80 different welding and manufacturing setups varies between 
10 N – 144 N.

The dataset of the 320 experiments was randomized three 
times and divided into two groups, one for training and testing 
as well as one for validating the ANN. To validate the ANN in 
dealing with missing or limited data, 16 parameter sets were 
included in the training and test group with one of four 
experiments and eight parameter sets were omitted. As a result, 

the ANN must predict the results of four experiments from 
eight parameter sets and three experiments from 16 parameter 
sets in the validating group without having a broad database in 
the training group.  The ANN was trained for 100.000 epochs 
and the same data set was used to test the accuracy of the ANN. 
Fig. 3 shows the relationship between the measured and with 
the ANN predicted shear tensile force for the training and test 
data set. For 93% of the results the difference between the 
predicted and the actual measured value were less than 10%. A 
better prediction of the test data set was not possible with the 
ANN because of inconsistent in the data set itself. As shown in 
Table 2 as an example for this parameter of the test data set the 
transmissivity varies inconsistent to the shear tensile force, 
while all other parameters kept constant.

Fig. 2. The maximum shear tensile force of the weld seams sorted by the 
applied laser power in relation to the transmissivity of the transparent sample.

Table 2. Results of a series of experiments with the same additive 
manufacturing and laser welding settings  

Experiment No. 1 2 3 4

Transmissivity in % 67.96 64.77 68.48 69.11

Shear tensile force in N 936.88 832.692 826.869 895.72

To analyze the performance of the ANN, it was evaluated if 
the predicted and the measured shear tensile force of an 
experiment was inside the range of +/- the single or double 
standard deviation of the mean value of the parameter set. The 
possible outcomes for the test are true positive (TP), the 
prediction and the measured value are in the specified range, 
true negative (TN), the prediction and the measured value are 
not in the specified range, false positive (FP) and false negative 
(FN), the prediction or the measured value is in the specified
range and the other is not. With these the performance 
parameters precision, recall, accuracy and F-Score can be 
calculated with the equations below: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 (1)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 (2)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹 (3)
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𝐹𝐹 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (4)

In summary the difference between the predicted value and 
the mean of the experimental value, the precision, was 77.6% 
for the single standard deviation and 91.9% for the double 
standard deviation. The accuracy of the ANN was 60.6% tested 
on one standard deviation and 91.9% for the double standard 
deviation. The F-Score was 0.725 tested on one standard 
deviation and 0.958 for the double standard deviation. 

Fig. 3. Comparison of the teaching data set to the prediction.

In Fig. 4. the relationship between the measured and 
predicted values of the validating data set is shown. The 
difference between the predicted and the actual measured value 
were less than 10% for 84.4% of the experiments. Tested on 
the single and double standard deviation, the difference 
between the predicted value and the mean were in 64.8% of the 
cases truly smaller than the single standard deviation and in 
88.1% of the cases truly smaller than the double standard 
deviation. The prediction accuracy of the ANN was therefore 
reduced to 55.6% for the single standard deviation and 88.1% 
for the double standard deviation. The F-Score was 0.664 for 
the single standard deviation and 0.937 for the double standard 
deviation. 

Fig. 5. shows the F-Score in dependence of the tested 
standard deviation. The blue curve shows the F-Score of the 
ANN performance for the test data group. The orange curve 
shows the F-Score for the validation data group. It can be 
observed that the performance of the ANN for a standard 
deviation greater than 0.7 σ gets less for the validation data set. 
The grey and the yellow curves show the F-Score of parameter 
sets, which were represented with three (data 1) and four 
experiments (data 2) in the validation data group. Therefore, 
these parameter sets were represented by one or zero 
experiments in the test and training data group and did not have 
a broad database for training the ANN. While the F-Score of 
the ANN for data set 2 is lower, the grey curve follows the F-
Score for the train data set. Therefor it can be concluded, that 
the ANN is very stable as long as one experiment with the same 

additive manufacturing and welding parameter settings is 
represented in the training data set. 

Fig. 4. Comparison of the validating data set to the prediction.

Fig. 5. F-Score in dependence of the tested standard deviation.

4. Conclusion

This work examines an ANN based approach to predict the 
shear tensile force of laser transmission welded additively
manufactured components made in a fused deposition 
modelling process. For the investigations the results of 320 
experiments with differences in additive manufacturing and 
welding parameters were used to train and validate an ANN. 
Therefore, the database was split in a train and a validation 
group. The results show, that the performance and accuracy of 
the ANN based on the used data decreased for the validation 
data group. The accuracy of the ANN that the predicted shear 
tensile force of an experiment is truly in the range of the double 
standard deviation around the mean was 88.1%. Furthermore it 
was observed, that the F-Score for the ANN tested with a 
dataset, which included only parameter sets, which were 
represented one time in the training data group, were similar to 
the F-Score tested with the training data set. 

With the presented ANN, the shear tensile force of 
additively manufactured and laser welded samples could be 
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predicted with a high accuracy. To increase the accuracy and 
F-Score of the ANN and reduce the standard deviation of the 
experiments, more welding experiments have to be done. 
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