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relationship between the US National Association of
Home Builders Index and the S&P CoreLogic Case-
Shiller 20 City Composite Home Price Index (SPCS20).
The empirical evidence implies that the survey data
can help to predict US house prices. This finding ex-
tends the results of Granger causality tests performed
by Rodriguez Gonzalez et al. in 2018 using a new
machine learning approach that methodologically dif-
fers from traditional methods in empirical financial
research.
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1 | INTRODUCTION

Risk management frameworks today are supposed to be forward looking (see e.g., Breden,
2008; Jorion, 2009). More specifically, Rochette (2009) has argued convincingly that all
organisations should try to not forgo the advantages and opportunities that an adequate
risk management programme can deliver, and that in order to ensure this a strong risk
culture has to be implemented, that creates an environment where risk managers are not
just waiting for bad things to happen. This could be of special importance for the financial
services industry. As a matter of fact, Vazquez and Federico (2015) have noted that the
global financial crisis has casted some doubts on the quality of bank risk management
practices. These concerns have also been felt by bank regulators (see e.g., Liu et al., 2011;
Vazquez & Federico, 2015). Moreover, it has also been questioned how the subprime crisis
—a problem in a rather small segment of overall US financial markets—was able to hurt
the global economy so badly (see Bullard et al., 2009; Eichengreen et al., 2012). This
important question still is not answered in an adequate way yet. In any case, US house
prices without a doubt have played a key role in this crisis (see e.g., Bullard et al., 2009;
Wegener et al., 2019). As will be discussed in more detail, the European financial services
industry also seems to be of some importance in this context (see e.g., Mizen, 2008; Noeth
& Sengupta, 2012). Similarily, Rodriguez Gonzalez et al. (2018) have argued convincingly
that risk managers should try to develop an early warning indicator system for real estate
prices in the United States. Financial market prices that are determined in highly liquid
markets should reflect information about the future. Stock prices, for example, ought to
be helpful in forecasting the development of corporate earnings at the level of individual
firms and the business activity in the economy as a whole (see e.g., Aylward & Glen, 2000;
Goddard et al., 2006). Therefore, it could be argued that the stock market should be a
leading indicator of corporate profitability and economic growth. Assuming a certain
degree of market efficiency other prices that are determined by the activities of rational
buyers and sellers in the financial sphere should also provide relevant information about
future developments. However, with regard to house prices it has been argued convin-
cingly that the property market could be inefficient due to its heterogeneity (see, most
importantly, Clayton et al., 2009; Dietzel et al., 2014). Moreover, Hausler et al. (2018) have
noted that real estate investors may be especially sensitive to changes in sentiment due to
the specific characteristics of real estate markets such as the relatively low market
transparency or long transaction periods. Therefore, sentiment indicators are likely to be
perfect candidates on which to base an effective early warning system. Thus, financial
time series that belong to the two categories house prices and sentiment indicators seem
to be particularly suitable candidates when searching for use cases trying to implement
forward looking financial risk management approaches that use the concepts of Granger
causality or entropy. In this context, the concept of Granger causality obviously is of
special importance. This is more or less true by definition because a certain variable is
said to be Granger causing a second variable when it is useful in forecasting future values
of the other time series (see, most importantly, Granger, 1969, 1988). One possibility is
that a variable Granger causes another variable and that in the same time this second time
series also Granger causes the first time series. In this case there are feedback effects
among the two variables examined and consequently there is bidirectional Granger
causality (see e.g., Hiemstra & Jones, 1994; Xie & Chen, 2014). Unidirectional Granger
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causality, on the contrary, is said to exist when one variable Granger causes the other
variable but not vice versa.

The concept of Granger causality is of some importance in the field of real estate economics.
This approach has, for example, been used to analyze the lead-lag relationship between house
prices in different neighbouring regions (see e.g., Blake & Gharleghi, 2018; Teye et al., 2017)
and between house prices and macroeconomic variables or the stock market (see, amongst
others, Green, 2002; Luo et al., 2007). Moreover, this technique is also quite popular in the
macroeconomic literature. In fact, Granger causality is an important concept for econome-
tricians searching for leading indicators of economic activity (see e.g., Breitung & Candelon,
2006; Huh, 2002). Rodriguez Gonzalez et al. (2018) have employed this empirical approach to
assess whether the National Association of Home Builders (NAHB) Market Index—an im-
portant sentiment indicator for economic activity in the US real estate sector—respectively its
subcomponents can be a suitable leading indicator for property prices. The empirical evidence
reported in this study seems to indicate that the NAHB data indeed can help to forecast house
prices in the United States.

The tools developed in the field of machine learning right now are starting to have an
impact on the real estate economics literature. Pioneering work in this area was done by
Hausler et al. (2018). This very important study uses machine learning techniques to construct
sentiment indicators for real estate markets. Our paper however adopts a completely different
approach. We employ techniques of machine learning in combination with the concept of
transfer entropy to improve early warning systems that are based on sentiment indicators and
have been constructed using the tools of traditional time series analysis. Even though econo-
metrics has a long-standing background in the application of Granger causality (e.g., from
Cheng, 1979 and Geweke, 1984 to Luu Duc Huynh, 2019 and Osiobe, 2020), we further will
consider emerging approaches from the field of machine learning and also will use the tech-
nique of transfer entropy (see e.g., Behrendt & Prange, 2021; Dimpfl & Peter, 2014). Here, we
wish to highlight machine learning workflows based on transfer entropy parameter studies as
promising frameworks for causal inference to aid the development of econometric models.
More specifically, we use the concept of transfer entropy in combination with some tools from
the field of machine learning to validate the results of the important study by Rodriguez
Gonzalez et al. (2018) by employing a completely different methodology. As will be discussed
later on in more detail the empirical research strategy used here can be helpful to cope with
potential problems due to nonlinearities. Additionally, employing the transfer entropy ap-
proach in combination with techniques of machine learning might also be interesting because
it will provide additional information about the relationship under investigation (especially
with regard to the selection of the number of time lags to be considered in empirical models).
At this point it has to be noted that the empirical evidence presented below just shows one
possible application of the concept of transfer entropy in the field of financial economics.
Obviously, this technique can be employed to analyze numerous other questions that are of
relevance in economics and finance. As a matter fact, some ideas for future research will be
discussed in the conclusion. However, it also has to be noted that the use case examined here—
namely, the search for an appropriate leading indicator for house prices that can be helpful
implementing forward-looking risk management approaches—is very important. The results of
our empirical study, therefore, are highly relevant by themselves. This fact has clearly been
demonstrated by the major economic problems that have been caused by US subprime crisis—a
disaster that also had major consequences for financial risk managers in Europe and other parts
of the world. In sum, our empirical findings seem to make a valuable contribution to the
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literature in the fields of real estate economics, financial risk management and machine
learning.

The paper is structured as follows: Section 2 briefly surveys the relevant literature focusing
on empirical evidence from the United States and the United Kingdom. Section 3 then ex-
amines some general machine learning issues that are of special importance for this study. In
Section 4, the concept of transfer entropy is discussed. Section 5 provides some information
about the data examined. Moreover, some first empirical evidence with regard to the time series
properties of the variables examined are presented here. Section 6 then reports and also dis-
cusses the empirical evidence that was obtained using the transfer entropy methodology in
some detail. Before concluding in Section 8, Section 7 examines why the results of our em-
pirical investigations are important for risk managers working in the European financial
industry.

2 | SOME EMPIRICAL EVIDENCE FROM THE UNITED
STATES AND THE UNITED KINGDOM

Meanwhile, numerous empirical studies have searched for a suitable leading indicator of
housing activity in a number different countries (see e.g., Croce & Haurin, 2009; Ro-
driguez Gonzalez et al., 2018). As will be shown, the focus of the literature lies on data
from the United States and from the United Kingdom. Without a doubt, sentiment in-
dicators might be helpful in this context. As already noted, there is some empirical evi-
dence suggesting that sentiment indicators can be helpful to predict changes in the
market for real estate assets (see e.g., Dietzel et al., 2014; Tsolacos, 2012). In this context
Tsolacos (2012) has argued convincingly that sentiment and confidence indicators could
be particularly helpful when it comes to the identification of turning points in real estate
markets. Given that that such phases are of crucial importance for investors and risk
managers, the recent interest in this topic is certainly well understandable. Thus, it should
come as no surprise that there is some related literature. As a matter of fact, there
meanwhile are a number of relevant studies examining data from the United States.
Moreover, some applied econometricians recently also have analyzed time series from the
United Kingdom. As already noted, the NAHB housing market index is usually considered
to be the most popular leading indicator for US real estate prices and other variables that
are related to housing activity (see, amongst others, Goodman, 1994; Marcato & Nanda,
2016). The ability of this sentiment indicator to act as leading indicators of housing
activity in the United States is discussed quite controversially in the literature. Marcato
and Nanda (2016), for example, have shown that the NAHB housing market index can be
helpful predicting house prices in the United States. To do so they have employed Granger
causality tests. However, the empirical evidence presented by Croce and Haurin (2009) is
less promising. They have examined the ability of the NAHB sentiment indicator to
forecast US housing activity by also performing Granger causality tests. Though the re-
sults reported in this paper seem to imply that the NAHB data can indeed help to predict
some important time series measuring real estate activity in the United States, there are
still problems in a number of cases. Moreover, in the cases where Granger causality
between the NAHB housing market index and other relevant time series from the US
housing market has been detected Croce and Haurin (2009) have usually found evidence
for the existence of bidirectional Granger causality. Thus, there seem to be, possibly
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nonlinear feedback effects. This would certainly be a problem using the NAHB housing
market index as a leading indicator for the US real estate market activity employing the
traditional techniques of time series econometrics. Additional research that can define the
extent of causality and recognise possibly nonlinear feedback loops would be necessary to
improve our understanding about the way the two time series are related to each other
and about the predictive power of the sentiment indicator. Ideally, this would be an
analysis that is updated and evolves with the time series themselves. This challenge
revisits one of the major aspects of machine learning workflows with their ability to
update analysis results on the fly and learn even nonlinear relationships from the data.
Such relationships, as we will see in this article, can be captured and measured not only in
existence, but also extent, by the concept of transfer entropy.

Given the importance of the question whether the NAHB data constitutes a suitable basis
for an early warning system for US real estate activity Rodriguez Gonzalez et al. (2018) have
tested for Granger causality employing the approach suggested by Toda and Yamamoto (1995).
The main advantage of this approach is that it does not require major pretesting efforts that can
cause problems (e.g., cointegration tests). Only the order of integration of the time series under
investigation has to be determined. There is no need to examine variables in differences.
Moreover, the test procedure is also very popular because of a Monte Carlo study by Zapata and
Rambaldi (1997) that has shown some very favourable characteristics of this approach. This
technique requires the estimation of an augmented vector autoregressive (VAR) model in
levels. The empirical evidence reported by Rodriguez Gonzalez et al. (2018) shows that the VAR
model should consider three to four time lags. Using this approach there are clear signs for
Granger causality running from the NAHB housing market index to the S&P/Case-Shiller
20 city house price index. Consequently, the data compiled by the NAHB indeed seems to be
helpful forecasting real estate prices in the United States. Another study of great importance for
our empirical work is Hausler et al. (2018) because this paper uses techniques of machine
learning to develop a news-based approach for prediction purposes examining data from the US
real estate market. More specifically, the authors employ machine learning techniques to
construct a text-based sentiment analysis tool that can be used to construct a useful leading
indicator. The paper has reported very favourable empirical evidence. It certainly is an im-
portant door opener for the use of machine learning techniques in the field of real estate
economics.

With regard to international evidence on the relationship between sentiment indicators and
house prices there is some highly relevant recent empirical work from the United Kingdom. In
fact, Wood (2003) and McLaren and Shanbhogue (2011) have suggested to utilize data from the
Housing Market Survey which is compiled by the Royal Institution of Chartered Surveyors
(RICS) to forecast house prices in this country. McLaren and Shanbhogue (2011) have shown
that the combination of the RICS data with Internet search data (more specifically, people
interested in both buying and selling properties) can be helpful to forecast house prices.
Moreover, Kunze et al. (2020), meanwhile, have reported quite favourable empirical evidence
testing for Granger causality between the RICS survey data and the level of house prices in the
United Kingdom. Doing so they also have employed the approach that has been suggested by
Toda and Yamamoto (1995). Therefore, Kunze et al. (2020)—which also builds on Rodriguez
Gonzalez et al. (2018)—is of some importance for the empirical evidence to be presented
later on.
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3 | SOME GENERAL THOUGHTS ABOUT MACHINE
LEARNING IN THE CONTEXT OF TRANSFER ENTROPY

The history of machine learning is closely linked to the development of computational cap-
abilities and methodologies in computer science (see Athey, 2018). As key properties of data—
such as variety, velocity and volume—grew over the past decades, traditional systems for
handling and analysing data became infeasible. The exponential growth of what has been
dubbed the big data trend was accompanied by an exponential growth of computational power.
Computer science and software development—as original fields of growth—continuously
created efficient algorithms and workflows to better work with multivariate, possibly in-
complete, nonlinear, and unstructured data. Ease of utilization and flexible workflow adjust-
ments have been at the heart of this development since. Machine learning best practices and
frameworks emerged largely independent from established methodologies in fields such as
econometrics. In this context, Athey (2018) has noted that there has not yet been much
diffusion of econometric concepts into machine learning, but there is some overlap in common
statistical assets. Above that, we argue that machine learning best practices will diffuse into the
field of econometrics as it will become augmented by the tools and data science workflows
codeveloped therein.

Machine learning applications and thorough methodologies have existed for a few decades
already (see Mjolsness & Decoste, 2001). Nevertheless, especially breakthroughs in analysis of
unstructured data (e.g., Hinton et al., 2012) and value creation associated with formerly un-
derutilized data sets have led to accelerated attention, financing and development in all current
disciplines of artificial intelligence, including traditional machine learning and data science
approaches. As of yet, the focus of these disciplines has been seen in predictive analytics and
pattern recognition (the latter centred around unsupervised clustering and dimensionality
reduction) in big data sets (e.g., Athey, 2018; Lopez de Prado, 2019). Basuchoudhary et al.
(2017) underline the focus of prediction when utilizing machine learning for economic tasks.
This seems natural from two perspectives: As it is hard from an epistemological perspective to
understand large, frequently updated data sets and find their underlying structure with tra-
ditional or manually quickly traceable algorithms, a layer of abstraction for prediction and
other tasks was built. Using this machine learning toolbox layer, researchers are able to effi-
ciently and effectively provide higher predictive power at the cost of being able to apply models
of complexity. Direct prediction on the contrary, offers many decision makers in the economy
higher value-creating power than just deriving complex relationships and models from the
data, at a minimal additional effort. However, we do not see the development to stop at
prediction and reject efforts to categorise machine learning by the criterion of trying to predict
something. As research continues, concepts well established in econometrics such as causal
inference gain modern counterparts in machine learning. In fact, Lopez de Prado (2019) argues
that for every step in econometrics, machine learning already features a homologous step.

The interfaces of the toolboxes that were built in machine learning are easy to use for such
tasks and offer tuning capabilities combined with high performance. This factor of automation
of efficient workflows will be the driver of said continuous diffusion process of machine
learning frameworks into different fields of science. The swiftness of the development in
machine learning is underlined by the fact that the languages R (see R Core Team, 2019) and
Python (see van Rossum & Drake, 2009) rank high in the IEEEs spectrum of programming
languages (Cass, 2018). Python has been gaining wide popularity for its ease of use and flex-
ibility, whereas Rs continued best practice support of data wrangling and analysis tasks will
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keep it relevant. The increasing amount of libraries and packages available to solve specific
tasks enable quick and novel solution processes in both of these languages.

The focus on performance and being able to handle even complex data resulted in ap-
proaches that ‘let the data speak for itself’ (see Bzdok et al., 2017). After enabling the utilization
of unstructured data in, for example, the medical sciences, we have not arrived at a point where
we can demonstrate said homologous concepts in machine learning for original tasks in
econometrics. We will demonstrate an efficient causal inference workflow using machine
learning toolboxes not relying on Granger causality or the concept of cointegration. Moreover,
we offer a methodology utilizing modern machine learning pipelines, modern big data hand-
ling technology stacks and tools. Importantly, this approach can be generalised to create ma-
chine learning supported causal inference pipelines in economic investigation to many
structured and unstructured data set. Hence, though we demonstrate the bivariate, nonlinear
numerical case as an introduction above what is possible with Granger causality measure-
ments, this workflow can be extended further to multivariate nonlinear numeric, discrete and
even textual data sets.

As a first principle in this workflow, we utilize a different empirical approach—namely
transfer entropy—to examine the relationship between the time series analyzed by Rodriguez
Gonzalez et al. (2018) with toolboxes and methods available from the machine learning realm.
This concept recently has become quite popular in financial economics (see, among others,
Behrendt & Prange, 2021; Dimpfl & Peter, 2014).

4 | TRANSFER ENTROPY AND AVAILABLE MACHINE
LEARNING LIBRARIES FOR R AND PYTHON

Shannon entropy (see Shannon, 1948) is a measure of uncertainty of description of a random
variable X with a distribution P (x;) by a certain number of base 2 bits, that is, it is possible to
measure the quantity of information contained in X in bits by defining the average number of
bits needed to encode draws from P (x;) via

n
H(X) = =) [P(x)log P (x))].
i=1
Other measures of entropy exist that have a more parametrised approach to measuring
information content, for example, Rényi entropy (see Rényi, 1970). Shannon entropy is the
most widely used criterion to measure information content within a discrete variable.
Transfer entropy was introduced in Schreiber (2000), relying on Shannon entropy and the
Kullback-Leibler distance, as a quantitative measure of statistically significant transfer of in-
formation in time series that is able to distinguish between driving and responding elements in
such systems (see Bossomaier et al., 2016b; Simon et al., 2019). It, therefore, aims at detecting
dynamic causation links between a paired time series (see Syczewska & Struzik, 2014). Simon
et al. (2019) summarise accordingly, that information flow from a process J to a process I can be

measured by quantifying the deviation from the generalised Markov property p(i; , Iil(k)) =p

(P i,(k) , jt(l)) given that I, , ; is conditional on the k previous observations (Markov process of
order k) and J, , ; is conditional on the [ previous observations of J (Markov process of order )
as well as relying on the Kullback-Leibler distance (see Schreiber, 2000). Therefore, transfer
entropy based on Shannon entropy determines an information flow T;_; by calculating
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Transfer entropy is a model free measure of information flow from one time series to
another (see Bossomaier et al., 2016a; Vicente et al., 2011). This greatly distinguishes it from
Granger causality. However, according to Bossomaier et al. (2016b), transfer entropy may
be considered to be a generalisation of Granger causality and is in this respect, able to answer
the question how much information is transferred at a certain timestep from the past of one
time series to the current state of another time series. Bossomaier et al. (2016b) emphasise that
transfer entropy is an asynchronous measure of information flow and, therefore, able to
quantify differing amounts of information flow from a time series X to a time series Y opposed
to the flow from Y to X. Previous entropy based measures (e.g., mutual information) did not
expose this directional characteristic.

Syczewska and Struzik (2014) argue that financial time series often show autoregressive
conditional heteroscedasticity and show non-Gaussian statistics alongside nonlinear correla-
tions. In this respect, they give an overview of Granger causality tests for nonstationary fi-
nancial time series and refer to the method published by Toda and Yamamoto (1995) as well as
concepts for nonlinear Granger causality that may be applied in financial analysis, yet require
more complicated steps to prepare and analyze such data. Dimpfl and Peter (2012) state that
Granger causality has been a predominant measure to detect relationships between time series,
however, its insights may often only be used to interpret the existence, and possibly compare
statistics, rather than measure the exact quantity of information flow in financial time series as
several assumptions about the underlying statistics and dynamics must be met for a quanti-
tative interpretation of Granger causality. Transfer entropy on the contrary, according to
Dimpfl and Peter (2012), is not limited to the assumptions made by the predominantly applied
measures of Granger causality, especially regarding linear dynamics. Other methods, such as
the Hasbrouck information share, assume cointegration between time series, whereas transfer
entropy does again not have such prerequisites. Therefore, Dimpfl and Peter (2012) state that
transfer entropy is applicable even if one cannot be sure about whether the assumptions
required by the standard models are met by the data. Considering the abovementioned dis-
cussions, transfer entropy is a promising generalized measure for quantifying the extent and
direction of information flow between financial time series.

Moreover, a derivative of transfer entropy, called ‘effective transfer entropy’, has been
introduced by Marschinski and Kantz (2002) to account for bias effects from small sample sizes.
Towards measuring bivariate transfer entropy and effective transfer entropy, an established
library for the programming language R exists (Simon et al., 2019) and similar approaches to
counter bias effects exist in the well-established approach developed by Wollstadt et al. (2013)
that can quantify bi- and multivariate transfer entropy.

5 | DATA AND INITIAL ANALYSIS

This empirical study tries to validate the results reported by Rodriguez Gonzalez et al. (2018)
employing a completely different methodological approach. Therefore, the same data set (vari-
ables and sample) is also examined here. As already noted, the NAHB housing market index is a
very popular leading indicator for US real estate prices and other variables that are related to
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housing activity that is widely observed by investors in different segment of the global financial
market. This time series is based on the results of a monthly survey among the members of the
National Association of Home Builders asking the participants for their attitudes and expecta-
tions with regard to the demand for single-family homes and house market conditions in general
(see e.g., Rodriguez Gonzalez et al., 2018; Wilcox, 2015). The measure of US real estate prices
analyzed by Rodriguez Gonzalez et al. (2018)—and, therefore, also here—is the S&P/Case-Shiller
CoreLogic 20 City Composite Home Price Index which reflects the development of house prices
in 20 metropolitan areas of the United States. This real estate price index is quite popular among
financial economists and consequently is often used in applied empirical studies (see e.g., the
recent studies by Huang, 2019; Ramirez, 2019). The sample examined here is from January 1995
to April 2018. The data that is used for all calculations is taken from Bloomberg.

The time series properties (order of integration) of the variables have been one important
reason for Rodriguez Gonzalez et al. (2018) to use the procedure suggested by Toda and
Yamamoto (1995). Nonstationarity in single time series replications needs consideration using
the transfer entropy approach, too (see e.g., Behrendt & Prange, 2021). Stationarity requirements
of transfer entropy measurements are usually considered and evaluated in a strict sense
(stationarity in mean, variance, covariance) and, therefore mitigated, for example, by taking
differences. This may result in excluding possibly important information. It is, however, still
under discussion whether a strict interpretation of stationarity is necessary or whether weaker
assumptions may apply for such causal inference, for example, under the presence of a con-
founding driving factor for the nonstationarity (see Runge, 2018). In any case, the transfer
entropy measurement libraries employed here offer ways to deal with nonstationary time series
under certain additional assumptions. One way is to provide replications of the nonstationary
time series process to infer significance of the measured causal relations. Typically, these
ensemble methods allow for taking approximately stationary cyclic repetitions under similar
conditions (e.g., for different subjects in neuroscientific experiments under similar experimental
setup). Taking approximately stationary subsamples of the nonstationary time series to attain the
required number of repetitions, under the assumption of an only slowly changing nonstationary
regime, has been mentioned as a viable method outside domains such as neuroscience—where
fast changes in time series are more common (see Gomez-Herrero, 2015).

As we deem the number of samples in the considered time series long enough, we wish to
include both, the nonstationary original series, as well as the stationary derivative in a hy-
perparameter study on transfer entropy behaviour. First of all, the results of unit root tests are
reported in the Tables 1 and 2. Here, the approach suggested by Elliott et al. (1996) is employed.
This testing procedure is known for its improved power compared to more traditional unit root

TABLE 1 Unit root test results for the National Association of Home Builders (NAHB) Housing market
index

This table reports the results of Elliott—-Rothenberg-Stock unit root test and the appropriate critical values (5%
error level) examining the NAHB Housing market index (in levels and first differences). Null hypothesis: Time
series has a unit root; Exogenous: Constant.

Data Data
in levels in first differences
Elliott-Rothenberg—-Stock test statistic 21.554 0.225

5% critical value 3.179 3.179
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TABLE 2 Unit root test results for the S&P/Case-Shiller CoreLogic 20 City Composite Home Price Index
(SPCS20)

This table reports the results of Elliott-Rothenberg—Stock unit root test and the appropriate critical values (5%
error level) examining the S&P/Case-Shiller CoreLogic 20 City Composite Home Price Index (in levels and first
differences). Null hypothesis: Time series has a unit root; Exogenous: Constant.

Data Data

in levels in first differences
Elliott-Rothenberg-Stock test statistic 20.751 0.645
5% critical value 3.178 3.178

tests (see, amongst others, Cooray & Wickremasinghe, 2007; Maddala & Wu, 1999). Cooray and
Wickremasinghe (2007), for example, have stressed that the approach that has been suggested
by Elliott et al. (1996) dominates other commonly used unit root tests when a time series has an
unknown mean or a linear trend.

The empirical findings obtained using this approach seem to imply that both time series are
nonstationary variables integrated of order one. Consequently, the results reported by
Rodriguez Gonzalez et al. (2018) are confirmed using a different unit root testing procedure.

For calculating transfer entropy, different estimators of the mutual information distribution of
the processes can be employed (see Lizier, 2014). A Gaussian estimator assumes approximately a
pairwise jointly Gaussian distribution of all processes. Figure 1 shows that for diff(NAHB) versus
diff(SPCS20), we observe an approximately jointly Gaussian pattern. For NAHB versus SPCS20,
strong deviations from a joint Gaussian distribution pattern are exposed. The Gaussian estimator
further only exposes linear relations in the data. That being said, this estimator is far less
computationally expensive than others and may be a good start for a quick coarse overview when
traversing large parameter spaces (as suggest by Lizier, 2014). Because of the limitations of the
Gaussian estimator, we will concentrate on the Kraskov-Stogbauer-Grassberger mutual in-
formation estimator (KSG) (see Kraskov et al., 2004) for narrow interpretations, but will compare
the behaviour to the Gaussian estimator for completeness of the parameter study.

6 | MACHINE LEARNING WORKFLOW AND DERIVED
EMPIRICAL EVIDENCE

The machine learning workflow we developed constitutes advances over traditional econo-
metric approaches as we were able to perform a hyperparameter grid search in a parallel
manner. Scanning the hyperparameter space and drawing conclusions from the robustness of
the observed phenomena is a scheme typical for machine learning pipelines that we deem
advantageous for consideration in econometric investigations—especially in a situation such as
the one at hand where some empirical studies arrive at slightly differing results depending on
the methodology employed. Hence, a hyperparameter grid search traverses the meta-space of
results dependent on methodological settings such as the chosen lags for causal inference,
strictly stationary versus not strictly stationary processes considered, conditional mutual in-
formation estimator used for transfer entropy, and so forth. The parameter space we wish to
traverse is indicated by combinations of the following value sets:
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FIGURE 1 Bivariate scatter plot, marginal histograms (top row) and derived contour plots of the joint

distributions (bottom row) for the differences processes (left column) and original processes (right column).

These figures are plotted to gain insights about the data examined here. Processes that are considered ‘jointly

Gaussian’ will show a circular accumulation and concentration of scatterpoints. Here, the differenced processes

show an approximately jointly Gaussian distribution of their values, whereas the original time series deviate

largely from this assumption

- Time series analyzed: (original, differenced)
- Subsampling method:
o Eighteen chunks (replications) of 13 data points in each subsample of the original full
series available (239 observations)
o A single long series, with different start and end months to account for possible sample
bias. Start and end of sample were varied randomly within a window of 40 months at the
start and end of the original series. Thirty runs were completed and included as box plot
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representations of the measurements to gain insights on the robustness of the results
under varying subsample sets.
- Conditional Mutual Information Estimator: (JidtGaussianCMI, JidtKraskovCMI)
- Minimum Lag considered: 0 (no variation)
- Maximum Lag considered depending on the subsampling method above:
ol,.,12
ol,..,20

From a technical perspective, as the KSG estimation is computationally very expensive,
we set up a multiprocessing pool using the multiprocessing library for Python. All pipelines
ran on a modern 12 core CPU and a machine with 64 GB of RAM. The pipeline is optimised
for using as much CPU power as possible, but adhering to the RAM limits. We observed
strong RAM consumption with larger permutation settings as large amounts of surrogate data
sets of the smaller original time series data are created and temporary objects for mutual
information estimation and transfer entropy measurements required memory space in each
parallel run.

All settings can also be run with machine learning scheduling software (see e.g.,
Apache Airflow, 2020) to reduce downtime and necessity of manual reruns. This can be
important when analysing transfer entropy as each analysis run takes several hours or
even days depending highly on the permutation settings. If constant monitoring is not
possible, resources may go unused for significant amounts of time after completion of a
fork if no scheduling tool is utilized. Each run of each fork saved its results using the
pickle library.

For all experiments, we created a standard conda environment (see Anaconda Software
Distribution, 2020). This environment was set up using Python 3.7 with its libraries pandas,
matplotlib version 2.2 (for compatibility with idtxl), networkx version 2.4 (for compatibility
with idtxl), statsmodels and idtxl. We ingested the original time series data from an Excel
export directly from Bloomberg into a pandas data frame. We added the stationary
derivatives as new columns to the dataframe for selection based on the desired current
hyperparameter for the time series to be used (original or differenced). A numpy array of
the two time series processes was created for further data processing. This included, for
example, reshaping the numpy array into different subsets to create the abovementioned
replications. Graphical plots confirmed the validity of the data. The reshaped numpy array
was used to initialise an IDTxI Data object to subject it to further transfer entropy analysis
in our hyperparameter study.

Using our first approach of taking only small subsamples and subjecting them to analysis,
we received the results displayed in Figure 2. Considering target process 1 (i.e., testing for a
causal relationship from NAHB to SPCS20) the Gaussian estimator found significant causal
relationships with several settings for the maximum number of lags considered. These, may
however arise due to a non-Gaussian joint distribution of the subsamples and are reported here
for the completeness of investigating the behaviour of the estimators on the time series at hand.
Hence, we conclude that the results indicate false positive effects of Gaussian estimators under
a not-jointly Gaussian distribution of the two time series, respectively, only considering linear
effects between processes.

The KSG reported significant causal relations when considering lags 0 to 6. Looking in the
other direction, it is important to note that no linear relations from SPCS20 to NAHB were
found, as the Gaussian estimator did not measure any significant information transfers.
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FIGURE 2 Joint transfer entropy results of a subset sampling study with 18 repetitions of 13 months. These
figures show the results of the calculations searching for transfer entropy. Markers and colours indicate the CMI
(conditional mutual information) estimator used. The x-axis shows the maximum lag considered in the
measurement. Here, we observe several significant linear causal relations from National Association of Home
Builders Index (NAHB) to SPCS20 using the Gaussian estimator. Nonlinear effects from NAHB to SPCS20 are
present at lag 6. In the opposite direction, a nonlinear effect is observed at lag 4 only

However, the KSG estimator was able to uncover nonlinear relationships and reported a sig-
nificant overall information transfer when considering lags 0 to 4. The results here are reported
for completeness of methodological opportunities in a machine learning oriented hyperpara-
meter search setting. The shortness of the time series subsamples is probably not suitable to
uncover all causal relations, but the results are interesting in terms of comparison opportunities
to other hyperparameter settings to gain meta-level knowledge about causal inference beha-
viour on these processes.

As we wish to include both the nonstationary original series as well as the stationary (i.e.,
differenced) derivative, we will now continue our hyperparameter study using stationary, that
is, diff(NAHB) and diff(SPCS20), time series. We use differenced time series, as we will not
need to rely on the presence of several replications of short approximately stationary sub-
samples to measure valid transfer entropy results. Hence, we will be able to observe transfer
entropy for subsamples covering many years of the time series. By repeatedly taking small
variations of the start and end points of the subsamples, we can observe the sensitivity of the
transfer entropy measurement at each lag by doing several measurements with slight varia-
tions. Therefore, we constructed 30 runs with differing start and end points, each of guaranteed
length of over 160 months. Figure 3 shows the results of the analysis. The left column of
Figure 3 shows the boxplots for the measured information transfers from NAHB to SPCS20 in
two subfigures. The right column shows the information transfer that we observed in the
opposite direction. Each row indicates the estimator used. Each box plot features all significant
transfer entropy measurements that we found amongst the 30 runs for each maximum lag
indicated on the x-axis. Blue box-plots in the top row show the nonlinear results using the KSG
estimator, whereas orange box-plots in the bottom row show the linear results using the
Gaussian estimator.

Our empirical findings indicate robust results for information transfer from NAHB to
SPCS20, as can be seen in the two subfigures in column 1 of Figure 3. Here, the analysis is very
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FIGURE 3 Joint transfer entropy results of considering 30 runs of long stationary subsamples of the
complete time series. These figures examine the information flow between the variables under investigation
here. The top row shows the results using the Kraskov-Stogbauer-Grassberger (KSG) estimator (including
nonlinear effects), bottom row shows results using the Gaussian estimator (just including linear effects).
Columns indicate the direction of the information flow as stated in the subfigure titles. The x-axis shows the
maximum lag considered in the measurement. The y-axis shows the extent of the measured information transfer
over 30 runs

prominent in that both, KSG and Gaussian estimators, converge to similar transfer entropy
estimates with higher lags and the box plot bodies are very small in size. This is a plausible
outcome for time series with jointly Gaussian distributions. The pattern of this information
transfer at different lags for both estimators has also been reproducible with different sets of
subsamples repeatedly. Measurements including nonlinear effects seem to differ only slightly
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from measures considering only linear effects. One interesting observation is that nonlinear
information transfer from NAHB to SPCS20 is higher at lower lags than linear effects.

It is also very interesting to see the results of measuring the opposite directional effect—
pictured in the two subfigures in column two of Figure 3. Causal relations from SPCS20 to
NAHB are only found with nonlinear estimators and seem to be more dependent on the chosen
subsample. We observed moderate variation in the median and interquartile range of these
KSG boxplots using different sets of start and end combinations, whereas this was not the case
for the transfer from NAHB to SPCS20. Hence, the top right subfigure of Figure 3 features
larger boxplots and more erratic measurements. Consequently, there could be a problem with
the robustness of these results. It is also important to note that only nonlinear causal relations
seem to be observable repeatedly when considering information flow from SPCS20 to NAHB.
Hence, the bottom right subfigure of Figure 3 shows no prominent linear information transfer.
We conclude that robust information flow at a stable extent can be observed with different
estimators when considering causal effects from NAHB to SPCS20, whereas the opposite
measures are not robust and only nonlinear, where present at all.

As already discussed, this empirical study uses the transfer entropy approach to confirm or
invalidate the results from Granger causality tests reported by Rodriguez Gonzalez et al. (2018).
Results of a hyperparameter study indicate that causal information flow from NAHB to SPCS20
seems not to be present in a very robust way when only considering lower lags, however, a joint
information transfer is very prominent when considering an increasing number of lags. Further
analysis showed that the information transfer from SPCS20 to NAHB seems to be nonlinear
and fragile depending on the chosen time series subsample. Our hyperparameter study un-
covered interesting behaviours regarding the ability to detect linear and nonlinear relations in
different directions depending on the settings. We believe that further insights about the nature
of the causal relationship can be derived from studying the results of a deeper hyperparameter
analysis. The approach reported here uses machine learning workflows that can easily be
extended to incorporate multivariate analysis of time series and further hyperparameter set-
tings. We plan to employ the concept presented here to both, broaden and deepen our study to
incorporate further time series to condition on, as well as finer granularities of further para-
meters. To do this, we can transfer the machine learning pipeline to a data centre cluster as it is
able to run in typical big data and machine learning environments.

7 | IMPLICATIONS FOR THE EUROPEAN FINANCIAL
SERVICES INDUSTRY

It certainly should not be questioned that European financial service firms with a direct ex-
posure to the US real estate market (e.g., institutions owning commercial or residential real
estate assets) ought to closely monitor housing prices in North America. Additionally, credit
exposure to US real estate assets has to be kept in focus in this context. In fact, European banks
played an important role in the subprime crisis because of their holdings of mortgage backed
securities which created direct exposure to the US real estate market (see e.g., Hellwig, 2009;
Noeth & Sengupta, 2012). Bullard et al. (2009) have stressed that as long as US house prices
were rising most mortgage backed securities performed well (which means before the peak of
the subprime crisis was reached) because borrowers were usually able to sell real estate assets
without suffering losses when they were unable to make loan payments. But this changed with
falling house prices. Consequently, investors that held large portfolios of mortgage backed
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securities all of a sudden had to cope with substantial losses. In this context Mizen (2008) has
stressed the fact that some international investors had no experience with US real estate
practices. In addition to this important problem there may also have been some difficulties with
the risk management processes in many financial services firms back then. Lang and Jagtiani
(2010), for example, have stressed the role of financial risk managers to improve our under-
standing of this crisis. As already noted, the crisis also created a challenge for banking reg-
ulation. Cherpack and Jones (2013), for instance, have argued convincingly that the subprime
crises in the United States has triggered a strong response by regulators forcing the banks to
improve their risk management systems. This change in the regulatory environment was not
only observable in the United States. In any case, regulators clearly also played a role in the
crisis (see e.g., Swan, 2009; Vazquez & Federico, 2015). After some very costly bank bailouts
politicians and regulators wanted financial services firms to become more risk averse. There
also have been discussions about possible linkages between the US subprime crisis and the
European sovereign debt crisis (see e.g., Ureche-Rangau & Burietz, 2013; Wegener et al., 2019).
The latter crisis obviously also has brought about major challenges for risk managers in the
European financial services industry. More specifically, the events in the US mortgage market
may have increased the level of risk aversion among investors in other countries. Therefore, the
subprime crisis in the United States might have raised the awareness of asset managers that
there could also be neglected risks buying government bonds issued by less fiscally prudent
member countries of the European Monetary Union (e.g., Greece or Portugal). Chang and
Leblond (2015), for example, have examined the behaviour of fixed income investors before,
during and after the sovereign debt crisis in Europe in some detail. In this context, it has to be
stressed that the costly bank rescue programmes also worsened the fiscal difficulties in many
European countries and increased the premium for sovereign credit risk these issuers of gov-
ernment bonds had to offer to find investors (see e.g., Basse at al., 2012; Ejsing & Lemke, 2011).
In any case, European financial services firms with an exposure to North American real estate
assets should adopt appropriate measures to monitor the US property market. An early warning
system for house prices in North America could definitely be a central component of such a risk
management approach.

But there also is a more macroeconomic dimension. Fleming (1997) as well as Fleming and
Remolona (1999), for example, have convincingly argued that announcements of surprising
data for US key economic indicators can have strong effects on bond prices and interest rates in
North America. Given that the real estate market is of high importance for the US economy
(see e.g., Bouchouicha & Ftiti, 2012; Dogan & Topuz, 2020) it certainly does also make sense for
risk managers working in financial institutions that have no direct or indirect exposure to the
real estate market in North America to monitor US housing prices as soon as they hold some
fixed income securities denominated in US dollars. In fact, Bouchouicha and Ftiti (2012) have
noted real estate prices are considered to be one of the channels through which monetary
policy affects the US economy. Therefore, all financial institutions with an exposure to the US
bond market should at least in some way also analyze property prices in North America.
Additionally, it has to be stressed that the US bond market is of global relevance. Most im-
portantly, there is clear evidence for a rather strong influence of US interest rates on the
behaviour of bond yields in Germany and other countries (see e.g., Bremnes et al., 2001;
Monadjemi, 1997). Bremnes et al. (2001), for example, have reported convincing empirical
evidence that US interest rates have a significant influence on both German and Norwegian
interest rates, whereas the reverse effect at best seems to be modest. Moreover, US equity
markets also seem to have a special importance for global share prices (see, amongst others,
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Gjerde & Saettem, 1995; Syriopoulos, 2007). Syriopoulos (2007), for instance, has noted that
there is clear empirical evidence for the very important global role of the US equity market and
has also shown that the introduction of the common European currency has not changed this
special status. Therefore, even European financial service firms that do not hold US assets
could have an incentive to closely monitor the real estate market in North America. Phrased
somewhat differently, US house prices seem to matter for the North American bond and equity
markets and, therefore, are also potentially relevant for interest rates and stock prices in Europe
and other parts of the world. In this context Tiwari et al. (2020) have stressed the need to take
into account potential tail events such as the US subprime crisis when analysing spillover-
effects between the North American real estate market and financial asset returns. Schwert
(2011), for example, has examined the link between financial markets and real economic
activity in this crisis in some detail. An extensive literature overview of the causes of the global
financial crisis and the European sovereign debt crisis focussing on financial regulation is
provided, for example, by Meier et al. (2021). Moreover, Gorton (2009) has analyzed the origins
of the crisis. In any case, there are a lot of good reasons for financial services firms (like banks,
asset managers or insurance companies) in Europe to closely examine housing prices in the
United States — even for those institutions that have no direct exposure to the North American
real estate market.

8 | CONCLUSION

The empirical evidence reported above seems to imply that the NAHB housing market index
can help to forecast US house prices robustly, even with linear relations. An interesting out-
come of our hyperparameter grid search is that only fragile nonlinear relations seem to exist in
the opposite direction when considering stationary derivates. The machine learning pipeline
presented here offers an easy way to further study these effects in even finer detail on a data
centre cluster. Thus, the findings of Rodriguez Gonzalez et al. (2018) are validated and ex-
tended using a completely different methodological approach (namely transfer entropy) and
were uncovered using a machine learning workflow. Consequently, there is additional em-
pirical evidence for the ability of sentiment indicators to predict real estate prices in the United
States. Moreover, the testing procedure used here is not based on the traditional Granger
causality approach. This fact renders the results reported above particularly interesting. At this
point, it has to be noted that the optimal number of time lags considered in the VAR estimated
by Rodriguez Gonzalez et al. (2018) is lower than the optimal number of time lags considered
here. In any case, the information provided by the NAHB housing market index certainly can
be helpful for financial risk managers building forward-looking early warning system for US
house prices. As already noted, this is very important because modern risk management ap-
proaches ought to be guided by the idea that the responsible personal in an organisation is not
just waiting for bad things to happen. The empirical findings reported above, of course, are of
special importance for US financial institutions with a strong exposure to real estate assets in
North America. However, the experiences during the recent global financial crisis do show that
the results should also matter for banks and other financial services firms that are located in
Asia or Europe (see, e.g., Noeth & Sengupta, 2012; Wegener et al., 2019). Moreover, the em-
pirical approach that is used in this paper has also great potential in the field of applied
econometrics. In fact, this empirical study shows just one possible application where the
concept of entropy can be usefully employed. In particular, this technique can be applied to
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check the results of Granger causality tests. With regard to real estate economics the concept of
entropy could, for instance, be employed to examine the lead-lag relationship between the
returns of real estate investment trusts and changes to house prices. This important research
question already has been analyzed using Granger causality tests (see e.g., He, 2000; Myer &
Webb, 1993). Of course there are also further potential applications in other fields of economics
and finance. Future research in the area of energy economics, for example, could focus on the
relationship between energy consumption and economic growth (see, amongst others, Belke
et al., 2011; Tsani, 2010). With regard to macroeconomics the concept of entropy might, for
instance, be used to search for appropriate leading indicators of economic growth (see e.g.,
Breitung & Candelon, 2006; Huh, 2002). Beyond that, this approach seems to be suitable to
search for ripple effects among regional housing prices (see, amongst others, Lee & Chien,
2011; Shi et al., 2009). Furthermore, the concept of entropy could also be helpful in the
corporate finance literature to test for dividend signalling or dividend smoothing examining
time series data (see, for instance, Basse & Reddemann, 2011; Goddard et al., 2006).
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