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Mehrskalenanalyse textiler Faserkunststoffverbunde -

Steifigkeit und Festigkeit

Kurzfassung Die experimentelle Bestimmung von Steifigkeiten und Festigkeiten tex-
tiler Faserkunststoffverbunde ist teuer und zeitaufwendig. Darüber hinaus ist es wün-
schenswert, Parameter einer Lage innerhalb eines textilen Preforms zu bestimmen, weil
damit eine sehr viel genauere und einfachere Analyse des Versagens vorgenommen werden
kann, auch wenn dadurch Effekte der textilen Geometrie eventuell vernachlässigt wer-
den. Sind nur Parameter für eine textile Lage, die mehrere Faserorientierungen enthält,
bekannt, so ist es schwer, Aussagen über das Versagen und Schwachstellen des Laminates
zu treffen. Experimentell ist es jedoch ausschließlich möglich, eine komplette textile Lage
in eine Prüfmaschine einzuspannen.

Mit der vorgestellten Finite-Elemente-Mehrskalenanalyse ist es möglich, allein aus der
Kenntnis des (nichtlinearen) Verhaltens von Epoxidharz und der Fasern, sowie der tex-
tilen Geometrie, Steifigkeiten und Festigkeiten von textilen Faserkunststoffverbunden zu
bestimmen. Sowohl Parameter für eine einzelne Lage in einem textilen Preform, als auch
für mehrere textile Lagen können berechnet werden, wobei der Schwerpunkt aus oben
genannten Gründen auf der einzelnen Lage liegt. Nebenbei können mit der Mehrskalen-
analyse auch Steifigkeiten und Festigkeiten unidirektionaler Faserkunststoffverbunde er-
mittelt werden.

Ein besonderer Schwerpunkt liegt im Rahmen dieser Arbeit auf der Entwicklung und
Verwendung von Materialmodellen und Versagenskriterien, die in der Lage sind, das
nichtlineare und vom hydrostatischen Druck abhängige Verhalten der betrachteten Ma-
terialien realitätsnah zu beschreiben. Dabei kommen auch Regularisierungstechniken
zum Einsatz, um eine Netzabhängigkeit der Lösung der Finite-Elemente Berechnung
soweit wie möglich zu vermeiden. Die vorgenommenen Berechnungen und das vorgestellte
Invarianten-basierte quadratische Versagenskriterium (IQC) werden anhand zahlreicher
experimenteller Versuchsergebnisse validiert.

Schlagwörter: Mehrskalenanalyse, textiler Faserkunststoffverbund, Materialmodelle



Multiscale Analysis of Textile Composites - Stiffness and

Strength

Abstract The experimental determination of stiffness and strength of textile composites
is expensive and time-consuming. Furthermore, it is desirable to determine the material
behaviour of a single ply within a textile preform, because this enables a more exact and
simple analysis of failure, even though effects of the textile geometry will be neglected. If
only the behaviour of a whole textile layer is known, it is cumbersome to make predictions
for failure and to conclude on weaknesses of the laminate. However, experimental tests
allow for testing of a whole textile layer only, because it cannot be decomposed.

The presented finite element multiscale analysis is able to predict material behaviour
of textile composites, solely from the (nonlinear) material behaviour of epoxy resin and
glass fibres, as well as the textile fibre architecture. It is possible to make predictions for
a single layer within a textile preform or for multiple textile layers at once, however the
main emphasis in this work is on the single layer due to reasons stated above. Along the
way stiffness and strength of UD-composites can be predicted as well.

The special emphasis of this work is the development and use of material models and
failure criteria, that are able to describe the nonlinear and pressure-dependent behaviour
of the materials occurring in the multiscale analysis. In order to avoid mesh-dependent
solutions in the finite-element simulations, regularization techniques are applied. The sim-
ulations and the presented invariant-based quadratic criterion are validated on numerous
experimental test results.

Keywords: Multiscale analysis, textile composites, material models
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äußerst fruchtbare Zusammenarbeit. Einen ebenso herzlichen Dank möchte ich meinem
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allen anderen Kollegen, insbesondere Nina, Anne und Thomas, sowie Diedrich, Kai-Uwe,
Lutz und Birger für die gute Zusammenarbeit und die angenehme Arbeitsatmosphäre
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1 Introduction

1.1 Rationale and Motivation

Fibre reinforced plastics are becoming more and more popular these days. The reason
for their success is the wide variety of properties FRP offer in combination with low
weight. Versatility and low weight are leading to efficiency, which is a great demand of
the future. More than any other material, FRP can be designed to fulfill a special purpose,
while always remaining especially light. Actually, their adaptability comes from the fact
that they are more of a structure than a material. Therefore, they require much more
attention in the design and manufacturing process, which makes them overall rather more
expensive than other materials. Naturally, they were used in expensive high performance
structures like spacecrafts, military aircrafts, racing cars, boats etc. in the beginning,
where the demand for low weight exceeds the demand for low cost by far. Nowadays,
the cost for FRP has been reduced mostly due to the experience that has been made,
cheaper production methods, but also due to more competition. Hence, FRP have become
indispensable for many applications.

Textile composites are characterized by the manufacturing process which involves ma-
chines usually used for production of textiles. With these machines, the ”dry” rovings are
laid and connected, e.g. knitted, woven, braided, etc., in a preform. The lay-up of these
dry preforms is easier than with less flexible pre-impregnated layers and allows for more
draping and easier connection of the layers via pinning, stitching etc.. The resin infiltra-
tion of the fibres after the lay-up is followed immediately by the consolidation. During
the infiltration process the fibres are held in place by the textile structure of the pre-
form. Because the consolidation process, beginning with the infiltration, does not have to
be stopped textile composites are cheaper than prepreg material, which generate storage
cost.

Compared to prepreg-composites, the structure of textile composites is much more hetero-
geneous. In textile composites, the fibres are only equally dispersed throughout the fibre
bundles, but not over the whole layer. Between the fibre bundles, epoxy resin pockets can
be found and, depending on the textile preform, stitch- or knitting yarns. In addition,
fibre undulations are characteristic for textile composites. Therefore, the overall mechan-
ical performance of prepregs is better, but textile composites often have advantages in
through-thickness strength, delamination sensitivity and crashworthiness.

Usually, mechanical material parameters of FRP are determined with expensive experi-
mental tests. For unidirectional FRP, it is assumed that each layer is transversely isotropic
but textile composites exhibit orthotropic behaviour due to their through-thickness rein-
forcement. Thus, nine instead of five elastic properties as well as strengths have to be
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2 Chapter 1. Introduction

determined. However, not only the number increases, it is also much more difficult to
determine through-thickness properties. Therefore, it is a big challenge to determine the
material properties of textile properties.

Examples of textile preforms are shown in fig. 1.1.

Figure 1.1: Different preforms used in textile composites

1.2 Literature Review

In this section, a literature review is given on the determination of mechanical properties
of fibre reinforced plastics and the description of its material behaviour with material
models. The term mechanical properties includes elastic constants as well as hardening,
damage, viscosity and strength parameters.

1.2.1 Mechanical Properties of Unidirectional Composites

Due to the widespread use of UD-composites several models for the stiffness determination
of unidirectional composites exist as an alternative to tests. Usually analytical rules of
mixture ( e.g. Halpin-Tsai) are applied. Actually, these rules of mixture have often
been used to determine the fibre properties via reverse engineering. Nonlinear material
properties are not covered by these rules of mixture and their applicability to strength
prediction is judged not to be reliable. Therefore, experimental methods are first choice
for the determination of nonlinear behaviour and strength. However, several analytical
and numerical approaches exist as well.

Material models Numerous approaches to describe the nonlinear material behaviour
of UD-Composites have been developed. In the World-Wide-Failure-Exercise (WWFE)
by Hinton et al. (2004) a number of these has been published. For example, Cuntze
and Freund (2004) model the nonlinear behaviour under shear with an exponential Ram-
berg/Osgood approach. In this phenomenological approach, nonlinearity is modelled with
plasticity. Schuecker and Pettermann (2007) additionally take into account that Mechan-
ical Properties of damage and plasticity occur in combination.
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A more detailed approach to damage in UD-composites was developed by Ladeveze and
Lubineau (2002). It takes multiple forms of damage into account, namely fibre breakage,
matrix microcracking, deterioration of fibre-matrix bonds and delamination. Ladeveze
and LeDantec (1992) also take inelastic effects into account.

Micromechanical unit cells Often the random fibre distribution has been reduced to
periodical arrangements as hexagonal or square unit cells to allow for a closed analytical
solution. Stiffness and strength predictions for the fibre direction are easily done with
reasonable results, but in transverse direction the assumption of periodicity does not ac-
count for the randomness of the fibres in reality. Moreover, the square arrangement is
questionable as it yields orthotropic properties instead of transversely isotropic. Conse-
quently, numerical approaches for elastic constants with a random fibre arrangement in
RVEs have been undertaken by Gusev, Hine, and Ward (2000). Blackketter, Upadhyaya,
and King (1993) used a micromechanical unit cell to predict strengths of tows in a plain
weave fabric.

1.2.2 Mechanical Properties of Textile Composites

In contrast to UD-composites, the layers of a textile composite are not only connected
through the matrix, but also through fibres or yarn. In the manufacturing process, this
through-thickness reinforcement is needed to hold the load-carrying fibres in place. There-
fore, in theory the assumption of transverse isotropy does no longer hold for textile com-
posites. Nonetheless, textile composites are mostly used in thin-walled structures and
therefore only the in-plane properties are of interest and transverse isotropy is a valid
assumption. Non-crimp fabrics, for instance, are often treated as UD-composites, only a
knock-down factor to account for higher undulations compared to prepreg-composites is
applied, see B. N. Cox and Flanagan (1997). On the other hand, textile composites are also
used because of their higher delamination strength and damage tolerance resulting from
the through-thickness reinforcements. Furthermore, the connection of FRP-structures is
becoming more and more a crucial for their successful application. At the connections
three-dimensional stress states have to be modelled locally and textile composites thus
require more sophisticated modelling techniques than UD-composites.

A textile layer with multiple fibre directions behaves generally anisotropic, but a single
layer inside a textile fabric with in-plane- and through-thickness reinforcement can often
be assumed to be an orthotropic material. In the case of a planar (2D) state of stress as
found in thin-walled structures, the number of required mechanical properties of UD- and
textile layer is equal, but in a spatial (3D) stress state four more stiffness and strength
parameters each have to be determined for the textile layer, see Table 1.1. Not only the
number of parameters increases but also the complexity of determination. It is hardly pos-
sible to determine through-thickness parameters experimentally. B. N. Cox and Flanagan
(1997) have proposed a number of analytical methods to describe the three-dimensional
reinforcement structure and fibre undulations, but most of these are adapted to specific
cases rather than being generally valid. A numerical approach promises a more general
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description of textile composites and seems quite possible with the ever rising computa-
tional power. Whilst for stiffness prediction only the geometry has to be modelled well,
for strength prediction the nonlinear material behaviour has also to be taken into account.

Table 1.1: Elasticity and strength properties of UD- and textile lamina

lamina elastic constants strength parameters

2D 3D additional 2D 3D additional

UD-layer
(transversely-
isotropic)

E‖, E⊥, ν⊥‖,
G⊥‖

ν⊥⊥ Rt,c
‖ , Rt,c

⊥ , R⊥‖,
R⊥⊥

-

textile layer
(orthotropic)

E1, E2, ν12, G12 E3, ν13, ν23,
G13, G23

Rt,c
1 , Rt,c

2 , R12 Rt,c
3 , R13, R23

Yet another challenge arises in the prediction of mechanical properties of textile com-
posites. For UD-composites it is easily possible to determine properties of a single layer
experimentally, that is treated to be transversely isotropic in the following. This is not
possible for textile composites, the smallest producible unit already consists of at least
two layers with different fibre directions that behaves like a laminate. Thus, coupling
effects, e.g. between bending and elongation, are already present in a textile layer. A
textile layer also exhibits different bending stiffness depending on the direction although
the normal stiffness is the same. This behaviour cannot be represented by a standard
CAUCHY continuum, but requires higher order continua like the COSSERAT continuum
as proposed by Haasemann and Ulbricht (2006). However, other theoretically more simple
work-arounds have been proposed. One possibility is to neglect this phenomenon, that
admittedly vanishes the more layers are used. Another possibility is to split up the textile
layer in layers of common fibre direction, that are then assumed to be unidirectional and
can thus be treated like lamina of UD-composites. The mechanical properties of these
pseudo-unidirectional (quasi-laminar) layers are sometimes weakened by a knock-down
factor for the increased fibre undulations. Good introductions are given by B. N. Cox and
Flanagan (1997) and Crookston (2005).

1.2.2.1 Analytical Methods for Elastic Constants

The Mosaic Model presented by Ishikawa and Chou (1982) is one of the first analytical
approaches for woven composites. It is based on laminate theory and ignores the continuity
of the fibres to represent the geometry of satin weaves in a mosaic fashion, see Figure 1.2.
By adding an approach for fibre undulation, this model was extended to the Bridging
Model that also includes mosaic regions for the crimped parts in the satin weave, see
Figure 1.3.

The Bridging Model takes into account that regions with undulating fibres, such as C in
Figure 1.3, carry a lower load than regions with straight fibres, such as A, B, D and E. For
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Figure 1.2: Mosaic model of a repeating unit for an 8 harness satin by Ishikawa and Chou
(1982).

Figure 1.3: Bridging model of a repeating unit for an 8 harness satin by Ishikawa and
Chou (1982).

a given load N this is ensured by firstly averaging regions B, C and D as parallel springs
and secondly averaging regions A, BCD and E as series springs.

Stiffness knock-down factors for non-crimp fabrics are presented by Edgren and Asp
(2005). Their work is based on Timoshenko beam theory, modelling the wavy tows as
curved beams. Strength is not incorporated into the model.

1.2.2.2 Numerical Methods for Mechanical Propoerties

Analytical methods are mostly adapted to one specific textile geometry and incorporate
many assumptions and simplifications. Thus, it is natural to look for a more general
approach, as it is the finite element method. With a FE-model it is possible to describe
the complex textile architecture in a more general and less simplified representative volume
element (RVE). Over, the years a reasonable progress in describing the fabrics has taken
place, as Figure 1.4 illustrates. This progress mainly is a benefit of the ever-increasing
computational power.

One of the first numerical approaches by Blackketter, Walrath, and Hansen (1993) already
features a 3D-unit cell of a plain weave fabric, although the geometry is simplified. The
unit cell consists of two constituents, epoxy resin and tows, which are assumed to have a
fibre volume fraction of 70%, to give an overall fibre volume fraction of 60%. For the tows
a material model with an anisotropic invariant-based flow rule and a constant damage
formulation is presented.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.4: Finite element meshes of textile composites: (a) 2D-mesh of plain weave fabric
by Woo and Whitcomb (1994), (b) Voxel mesh of plain weave by Gunnion
(2004), (c) Mesh of plain weave fabric by Takano et al. (1999), (d) Mesh of
weft-knitted fabric by Takano et al. (1999), (e) Tetrahedron-mesh of plain
weave by Crookston (2005), (f) Tetrahedron-mesh of plain weave by Lomov
et al. (2007).

The damage initiation is predicted by a modified maximum stress criterion that is based
on stresses with respect to material coordinate directions instead of principal stresses. Six
failure modes are defined to allow for differentiated failure, e.g. that a pure matrix crack
parallel to the fibres does not reduce the strength in fibre direction significantly. When
failure is detected, the stiffnesses of the material are reduced instantaneously to a very
small value in the gauss point where failure has occurred. Thus, a progressive failure is
modelled in the ongoing computation. This constant damage allows to model a progressive
failure with little computational effort, however, the results are conservative and mesh
dependent, because the energy dissipation of the crack tends to zero, when the mesh is
refined. The material properties of the tows were determined with a micromechanical
unit cell, that will be discussed in chapter 1.2.1. This approach is an information-passing
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multiscale analysis, where several scales are computed independently.

Usually, only normal forces are taken into account in a unit cell, which is, however, not
valid for very thin laminates consisting of a single fabric, for example. In such a case
also bending of the unit cell has to be considered, as presented in a coupled multiscale
analysis by Woo and Whitcomb (1994). Here, a macro solution of a short cantilever is
retrieved by simultaneously solving unit cell computations on the mesoscale. Naturally,
the mesh of the mesoscale unit cell cannot has to be rather coarse, see Figure 1.4, because
its solution time is crucial for the overall performance of the computation as it has to
be solved multiple times in one macroscale solution step. Thus, Woo and Whitcomb
(1994) presented an algorithm for a 2D problem and enhanced it to 3D later, see Woo
and Whitcomb (1996). For failure initiation maximum stress and Tsai/Hill failure criteria
are used, but neither material nonlinearities nor progressive failure are taken into account.

B. Cox, Carter, and Fleck (1994) proposed a Binary Model that describes the fibre archi-
tecture with truss-elements. The axial properties of the fibres or tows are represented by
truss elements, whereas solid elements represent an ”effective medium” that accounts for
all other mechanical properties. Due to the use of truss elements it is very efficient and
capable of describing the textile architecture by simplest means.

Figure 1.5: Binary Model: Tow and matrix elements in a layer-to-layer angle interlock
woven composite (B. Cox et al., 1994).

It is very well suited to carry out statistical variations of mechanical properties due to
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its numerical effectiveness. Even cyclic loading can be simulated to account for fatigue
failure. The separation of the axial fibre properties from other mechanical properties
is done because they are dominating the mechanical behaviour of the whole material,
being two orders of magnitude greater than the other properties. The effective medium is
explicitly designed to represent transverse and shear behaviour as well as to incorporate
statistically distributed flaws in an averaged sense. It is possible to describe material
nonlinearities as well as progressive damage with the effective medium, if enough test data
are available for calibration. However, it is impossible to account for microstresses around
the tows and not very well suited for the application in a bottom-up approach, because
the properties of the effective medium have to be calibrated against the macroscale. With
today’s increased computational power, a higher resolution on the mesoscale is usually
favored.

The binary model was taken up by Haasemann and Ulbricht (2006) because its numerical
effectiveness combines very well with a coupled multiscale analysis, where many compu-
tations have to be carried out on the microscale. They are performing a homogenization
of elastic constants for a Cosserat continuum, that is able to describe a textile layer
completely.

There are also numerous approaches, which model the structure by volume elements and
thus allow for consideration of different Poisson’s ratios of fibre and matrix. Lomov et
al. (2002) conduct detailed studies on the geometry of textile preforms and developed a
program to model various textile architectures and calculate stiffness of textile composites
using the method of inclusions.

Karkkainen and Sankar (2006) compute the strengths of woven composites with the ”Di-
rect Micromechanics Method”. They use a unit cell to compute the microstresses in the
constituents, which are then evaluated by using either Tsai/Wu or maximum stress failure
criterion. As a very conservative approach failure of the first element is taken to be the
failure of the unit cell, i.e. the whole textile lamina. Karkkainen and Sankar (2006) show
that a change in the definition of failure, from first element to 1% of elements increases
the strength up to 30 %. Furthermore, material nonlinearities are not included into this
model. Bending of the unit cell is considered to enable the simulation of thin laminates
also.

Modelling the complex structure of textile composites in a unit cell is not an easy task.
The discretization of the structure requires a mathematical description and usually an
automated meshing algorithm. For a conventional mesh that describes the boundaries
between the constituents of textile composites as exactly as possible, this procedure leads
inevitably to heavily deformed element shapes, especially for hexahedra. Bad shaped
elements have a considerable influence on the quality of the solution, namely its conver-
gence and local stresses. In a study by Thom (1999) different conventional meshes of a
woven fabric are compared. The meshes differ by number of elements as well as mesh
geometry. Thom concludes that the effective Young’s modulus of the unit cell is only
slightly influenced, but a convergence can hardly be seen. However, even though Thom
uses higher order 20-node-hexahedron and 15-node-pentahedron elements, the through-
thickness stress is significantly reduced by around 70% in finer meshes.
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An approach to avoid bad element shapes and to simplify mesh generation is the approx-
imate Voxel meshing. The name comes from ”Volume Pixel” and means that the mesh
consists of elements having all the same size with an aspect ratio of one. Thus, the shapes
of the constituents of a textile composite can only be approximated. Kim and Swan
(2003) present a refined voxel method to reduce the relatively high number of elements
to give a good approximation of the geometry. A ”selective refinement” along the bound-
ary between the constituents alone results in elements with very different sizes adjacent
to each other, leading to highly inaccurate numerical results. Therefore, they propose a
”constrained selective refinement” that constraints the size difference of adjacent elements
and, even better an ”adaptive refinement” based on error estimators.

Gunnion (2004) uses the Voxel approach as well to model micromechanical and mesome-
chanical unit cells of plain weave and stitched fabrics, but without mesh refinement as
described above. Instead, he does vary the aspect ratio of the elements in the plain weave
fabric unit cell in the third direction.

The reason for this is at hand when looking at the geometry. Over the thickness of the
cell, which is much smaller than the other dimensions, two tows and the matrix phase
must be discretized. A study over aspect ratio of the elements and the number of elements
in thickness direction yields the conclusion that this thickness-refinement yields very good
results, where a coarse mesh refinement differs only by 4 % from the reference solution
The work is focused on elastic constants of textile composites. Thus neither material
nonlinearities nor failure are included in the model.

Takano et al. (1999) present a hierarchical model for textile composites that utilizes a
periodic unit cell of woven or weft-knitted fabrics. With a mesh superposition technique
it allows for the discretization of critical regions in a finer, local mesh. The material
formulation does not include material nonlinearites but an anisotropic damage formula-
tion. For damage initiation in the tows the Hoffman criterion, see Hoffman (1967) for
UD-composites is applied. A constant damage is applied similarly to the work of Black-
ketter, Walrath, and Hansen (1993) that exhibits the same conceptual weaknesses, namely
conservative results and mesh dependency.

Mattsson and Varna (2007) state that the exact geometry of fibre bundles is of little
significance for stiffness prediction.

1.2.2.3 Failure Criteria for Textile Composites

As mentioned before, textile lamina are orthotropic or general anisotropic, therefore well-
known failure criteria for UD-lamina fall short in predicting failure of textile composites.
Only textile composites with minimal fibre undulations and low 3D-reinforcement density
can be described by failure criteria developed for UD-composites, such as the Tsai-Wu
or Puck criteria, see Hinton et al. (2004). For other textile composites it is necessary to
use appropriate failure criteria, that are mostly still to be developed. Juhasz, Rolfes, and
Rohwer (2001) developed a failure criterion for orthogonal 3D fibre reinforced plastics e.g.
non-crimp fabrics. It is based on the criterion of Puck mentioned above and described in
Section 2.
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Another proposal for a failure criterion was made by Cuntze (2007), that is based on his
Failure Mode Concept.

Smith and Swanson (1996) find that a maximum strain criterion works well for the in-plane
strengths of a 2D-braided fabric, but do not deliver any strengths for the third direction.
Tan, Tong, and Steven (2000) present a maximum stress criterion for a 3D orthogonal
woven CFRP composite, that gives good results in fibre direction, but has weaknesses in
predicting transverse strengths. Karkkainen, Sankar, and Tzeng (2007) present a direct
micromechanics approach towards Quadratic Stress Gradient Failure Criteria

1.3 Objective and Outline

The determination of material properties of textile composites is very time-consuming and
expensive. Especially through-thickness parameters are nearly impossible to determine,
but needed for solving impact, delamination and load introduction problems. Therefore,
a virtual testing algorithm to determine elastic and strength properties of textile com-
posites is presented in this work, which shall complement and replace these expensive
experimental tests. So far, several models for this purpose were presented in literature,
but in these models the nonlinear behaviour of composite material was neglected. Some
models included the prediction of failure, but mostly with either mesh-dependent soften-
ing algorithms or even without progressive failure, which is very conservative. However,
for an accurate prediction of the textile composites’ characteristic material behaviour with
a multiscale simulation it is necessary to include nonlinearities and to eliminate the mesh
dependency of the algorithm as far as possible. This is the main focus of this work. To
provide a most general approach, the algorithm is able to predict the material behaviour
with the sole knowledge of the textile architecture and the properties of fibre and matrix.
The algorithm includes a multiscale simulation on three scales with unit cells on micro-
and mesoscale.

The multiscale algorithm is utilized to describe the inherent structure of textile compos-
ites. On the mesoscale, between 1 mm and 1 cm, the textile architecture is discretized
in an unit cell, but it is neither possible nor necessary to discretize single fibres. Fi-
bre bundles, consisting of fibre and matrix, are treated as continua, for which material
parameters are generated on the microscale, typically around 10 µm. In the microme-
chanical unit cell the interaction of a single fibre and the matrix around is discretized.
The discretization of the unit cells is done with voxel-elements, that allow for a simple
discretization of complex geometries. Furthermore, together with the applied fracture
energy regularization, they alleviate the inevitable mesh dependency that occurs when
material softening is computed. With the presented algorithm it is possible to determine
strength parameters for failure criteria not only for the whole preform, but also for single
layers within the preform. Therefore, it is possible to apply layer-based criteria that allow
for a more detailed analysis of textile composites.

The material behaviour of epoxy resin and fibre bundles has to be described in unit cells
presented in this work. Both are elastic-plastic materials that exhibit pressure-dependent
material behaviour, i.e. they behave differently under tension, shear and compression. For
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both new material models are presented that allow for the realistic simulation of these
material characteristics and offer very powerful but simple input possibilities. Tabulated
hardening curves under tension, compression and shear are used to model the nonlin-
ear behaviour. They are obtained from load-displacement curves, and allow for a very
convenient parameter identification. In addition, they have the big advantage that they
are physically meaningful and can thus be controlled easily by comparison of virtual and
experimental test.

Foundation of material modelling is a study of the experimentally observed material be-
haviour, which is presented in chapter 2 for epoxy resin, glass fibres, UD-composites and
textile composites. Most important, it is judged which material behaviour is relevant for
determination of strengths. In this work the three different phases of material behaviour
are discriminated. Firstly the elastic phase with linear material behaviour, secondly the
degradation phase with nonlinear material behaviour and a positive tangent modulus and
thirdly the softening phase that exhibits a negative tangent modulus. Failure is indicated
by transition from positive to negative tangent modulus and thus, located between degra-
dation and softening. Hence accumulating microcracks in the degradation phase are not
considered as failure.

Based on this study material models are presented in chapter 3 for a realistic description
of the nonlinear material behaviour of epoxy resin and UD-composites up to failure. In
chapter 4 failure criteria used to identify the failure of epoxy resin, UD- or textile com-
posites, and softening formulations to describe the progressive failure of each material are
presented. A validation of the Invariant-based Quadratic Criterion (IQC) and a softening
formulation presented in chapter 4 as well, highlights the importance of a proper softening
formulation.

The basis of multiscale simulations and homogenization are presented in chapter 5, to-
gether with an overview on the multiscale algorithm used for determination of stiffness
and strength of textile composites.

The first step of the multiscale algorithm, virtual tests of micromechanical unit cells, are
presented in chapter 6. Here, different representative volume elements are compared and
parameters for fibre bundles or UD-layers are generated.

Fibre bundles are used in the mesomechanical unit cells in chapter 7 to discretize the
textile architecture of two different textile reinforcements, non-crimp fabric and weft-
knitted fabric. The outcome of the virtual tests carried out with the mesomechanical unit
cells are homogenized material properties of non-crimp fabrics and weft-knitted fabrics
for use in macroscale computations presented in chapter 8. The validation of the material
models and the multiscale algorithm is accomplished by simulation of two experimental
tests.

A conclusion of the presented work and an outlook on promising, continuative research
areas are given in chapter 9.



2 Experimental Behaviour of Textile
Composites and its Constituents

In this chapter the experimentally observed behaviour of textile composites is described.
To understand the behaviour of textile composites it is important to understand the
behaviour of its components, fibre and matrix, here glass fibres and epoxy resin. The
behaviour of UD-composites is described here as well, because they occur as fibre bundles
in textile composites at mesoscale.

2.1 Epoxy Resin

Epoxy resins, i.e. thermosetting epoxide polymers, are widely used in composites manu-
facturing. They offer a great variety of properties, including high stiffness and strength
as well as high viscosity. Of course, they do not possess all of these desirable properties
together, but they can be adapted to a special purpose. The curing of these polymers
is induced by a ”hardener” and the curing time can be influenced as well. A thorough
mixing procedure is required to ensure an even curing throughout the whole matrix. The
viscosity of epoxies can be influenced as well, which makes them very attractive for textile
composites, that require a high viscosity of the matrix in the manufacturing process.

The mechanical properties of epoxies are influenced by the polymerization process, i.e.
ratio of polymer and hardener, their mixing quality and the temperature at which the
whole process takes place. Usually, epoxy resins are tempered at elevated temperatures
in an oven to speed up the polymerization process. Because of different temperature coef-
ficients of fibres and matrix, composites made of epoxy resin mostly incorporate residual
thermal stresses at room temperature.

The mechanical behaviour of epoxy resins is as complex as the atomic structure of the
polymer chains. Due to viscosity, plasticity, accumulating damage and pressure depen-
dency the stress strain curves are nonlinear, see Figure 2.1. Furthermore, they are influ-
enced chemically, by shrinkage as well as healing and physically by moisture as well as
temperature.

Viscosity of epoxy resin is described by e.g. Gilat et al. (2005). They report that high
strain rates increase stiffness and strength of three commercially available epoxy resins
under tension and shear, see Figure 2.2(a). In Figure 2.2(b) the stress relaxation of
an epoxy under shear can be seen. At low strain rates the effect of viscosity is mostly
negligible. For simplicity, viscosity of epoxy resins is neglected in this work.

12
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Figure 2.1: Nonlinear material behaviour of Epoxy Resin RIM 135 (Courtesy of Adden,
Fiedler)

(a) Strain rate dependency of shear (PR-520) (b) Stress Relaxation (E-862)

Figure 2.2: Viscous material behaviour of Epoxy Resin, source: Gilat et al. (2005)

To experimentally quantify viscosity, plasticity and damage in epoxy resins is extremely
difficult. Multiple tests are needed to discriminate these phenomena. Plasticity and dam-
age can only be separated through cyclic tests, with very slow strain rates to avoid viscous
effects. Tests with different strain rates are required to identify viscosity. Furthermore,
the nonlinear stress-strain behaviour is highly affected by hydrostatic pressure, i.e. the
epoxy resin behaves differently under tension, shear and compression. For example, under
biaxial tension so-called crazing, i.e. microcracks, occurs, but not under other load cases.
Therefore, the described tests have to be done for each of these load cases, to allow for
a complete description of the material behaviour. Such a complete test setup is seldomly
available.

Bowden and Jukes (1972) describe the plastic flow of epoxy resins amongst other polymers.
They propose a modified von Mises yield criterion that is linearly dependent on the
hydrostatic pressure, but do not verify this for epoxy resin.

Fiedler, Hojo, Ochiai, Schulte, and Ando (2001) describe the pressure dependency of
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epoxy resin, i.e. the different material behaviour under tension, shear and compression
and propose a quadratic failure criterion. Under tension, Figure 2.1(a) the nonlinearity
of the stress-strain curve is relatively small compared to shear, Figure 2.1(b). Moreover,
the strengths are very different under compression, tension and shear, see table 6.1. The
higher the hydrostatic compression, the higher the strength.

Under very high hydrostatic compression on the one hand the 2. Glass transition tem-
perature shifts and the stiffness is reduced whilst on the other hand a stiffness increase
can be observed, probably due to closing micropores and -cracks. These effects have been
mostly neglected, but shall be worked on in the second part of the WWFE by Kaddour
and Hinton (2005).

Moisture absorption reduces the stiffness of epoxy resins, but thus leads to an increased
failure strain, which is also desirable in composites. Therefore, a medium moisture content
is aimed for. Polymers are affected by the so-called glass transition through temperature.
Below the glass transition temperature they are in a stiff, brittle state and above in a soft
amorphous state. The glass transition temperature of epoxy resin ranges from 50 °C to
300 °C and depends on the curing temperature. High performance epoxy resin have a high
glass transition temperature. Chemically, epoxy resins are very stable and not affected
by corrosion. They are affected by other aggressive media, but this depends very much
on the special configuration of each epoxy resin system and thus is not discussed here.
Epoxy resins exhibit chemical shrinkage of only 2-5 %, which is low compared to other
matrix system. Therefore, they are best suited for high precision structures.

2.2 Glass Fibres

Glass Fibres are anorganic fibres consisting of silica and oxygen. They possess isotropic
material properties, and compared to other fibres, low stiffness, high strengths and high
failure strains. The stress-strain curve of glass fibres is nearly linear elastic up to brittle
failure. In brittle material the number of flaws is crucial for the strength, because the
stress concentrations around the flaws lead to an early failure of the whole material. Thus
the small diameter of the fibres implies less flaws than in bulk material, thus the strength
of glass fibres is much higher than of bulk glass.

2.3 UD-Composites, Fibre Bundles

The term UD-composites usually means a laminated composite, consisting of several layers
of fibres. Each UD-layer consists of parallel fibres that are aligned optimally. It is assumed
to have transversely isotropic properties, with the plane of isotropy being normal to the
fibre direction. They are manufactured either out of pre-impregnated layers (prepregs) or
filament wound with a winding machine.

In textile composites at mesoscale fibre bundles, consisting of one or more impregnated
rovings, can be regarded as regions with unidirectional fibre alignment as well. Depending
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on the textile architecture the shape of these fibre bundles is seldom constant along its
axis, and neither is the fibre volume fraction. Therefore, the fibre waviness in a fibre
bundle of a textile composite is higher than in other UD-composites, but they can be
treated as transversely isotropic UD-Composites.

Due to their optimal fibre alignment UD-composites provide the highest potential for
optimized lightweight constructions with fibre reinforced plastics.

2.3.1 Material Characteristics

UD-Composites inherit the characteristics of their constituents and further some that are
caused by the combination of fibre and matrix. The most important characteristic of UD-
composites is their direction dependent behaviour. In fibre direction the characteristics
of the fibre are dominating and the matrix characteristics can be neglected, whereas in
transverse direction the characteristics of the matrix, as described above, are occurring.
As described above they therefore exhibit viscosity, plasticity, damage, chemical shrinkage,
moisture sensitivity, etc. But damage and plasticity of an UD-composite are not caused
by the nonlinear epoxy resin behaviour alone, they are as well originated by microdamage
in the composite.

(a) Longitudinal tension (b) Transverse compression (c) In-plane shear

Figure 2.3: Nonlinear material behaviour of UD-layer Hinton et al. (2004)

Nonlinear material behaviour of an UD-layer under transverse compression and in-plane
shear is shown in Figure 2.3. The nonlinearity is much more pronounced under shear than
under transverse compression, but it is still not negligible.

Paepegem, Baere, and Degrieck (2006) used an ASTM D3518/D3518M-94(2001) standard
test method for in-plane shear response of polymer matrix composite materials by tensile
test of a ± 45 °laminate to quantify permanent strains and damage as shown in Figure 2.4
with a cyclic test. Viscosity is demonstrated by the hysteresis loops of the unloading-
loading paths. Therefore it is not clear whether the remaining strain can be attributed to
viscosity or plasticity, i.e. if it is permament at all. Also the secant moduli indicated by
the dotted lines are debatable, because it is clear that they are influenced by remaining
viscous strains.

In fibre direction the stress strain curve is almost linear, see Figure 2.3(a), but still initial
and secant Young’s modulus differ by nearly 10%. Different standards exist to determine
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Figure 2.4: Shear stress-strain curve for cyclic [+45°/-45°]2s tensile test. Paepegem et al.
(2006)

Young’s Moduli under tension EN-2561 (1995) and compression EN-2850 (1995). Both
are determined as secant moduli between 10% and 50% of the failure strength. The
compressive secant modulus is the lowest, followed by the initial modulus and the tensile
modulus is the highest However, it is not uncommon to neglect these differences.

Due to different thermal expansion of resin and fibre, residual thermal stresses arise on
the microscopic level after curing. It is assumed that these stresses are partly decreased
by moisture absorption of the composite under environmental conditions but they are
potentially able to imply microstructural cracks.

The adhesion of fibre and matrix is of great importance as well, because the fibres are
bearing the main loads, but the loads have to be transferred into and between the fibres
through the matrix. Fibre coating therefore is a major topic in composites and only the
advances made in the past allow for an application of FRP at all.

Alternating lamina orientations cause inhomogeneous stress distributions and stress peaks
at the free edges already under unidirectional loads. This effect is commonly known as the
free-edge effect and significantly restricts the validity of tensile material tests on coupon
level. Generally, for industrial components a quasi-isotropic stacking sequence is used to
minimize stress peaks between different lamina directions.

2.3.2 Failure Characteristic

The failure characteristic of composites is complex and based on different anisotropic
effects. As for epoxy resin, failure of an UD-layer is pressure-dependent, i.e. tensile,
shear and compressive strengths are different. A single UD-layer fails in a brittle manner,
it can be separated into fibre failure (FF) and inter-fibre failure (IFF). In fibre direction
compressive strength is lower than tensile strength, because the predominant failure mode
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under compression is microbuckling that occurs before fibre rupture. Compressive FF is
therefore heavily dependent on fibre undulations that stimulate buckling and the matrix
that inhibits buckling. Tensile FF is predominantly dependent on the strength of the fibres
itself, only a bad fibre-matrix interface may lead to fibre pull-out. The most important
influences on strength in transverse direction are the strengths of matrix and of fibre-
matrix interface. The latter has a detrimental influence only on the tensile strength.
Therefore, in transverse direction the compressive strength is significantly higher than
the tensile strength. Compared to the epoxy resin they are made of, UD-layers or fibre
bundles have a lower tensile strength, but a higher compressive strength in transverse
direction.

The transversely-isotropic material symmetry of UD-composites is used to determine frac-
ture modes, for example Puck (1996) defines different modes for inter-fibre failure, see
Figure 2.5. Besides the fracture mode Puck also determines the fracture angle and thus
is able to distinguish between critical and uncritical IFF. When the fracture angle is dif-
ferent from 0°and transverse compression acts in the lamina, a wedge shaped failure can
lead to a delamination and buckling failure of the whole laminate. Other IFFs are rather
uncritical. This classification allows for an evaluation of the criticality of the failure, which
is crucial for the design engineer in order to be able to avoid overly conservative results.

Another failure mode of laminates is delamination, where the layers are separated from
each other. Delamination can occur due to impact, manufacturing defects, IFF and the
free-edge effect. It is a very critical failure, because it occurs inside the laminate and is
very hard to detect from outside. At free edges of the laminate and at IFF cracks shear
stresses develop between the layers, which lead to delaminations subsequently.

The failure of a laminate is more complicated, because it is a redundant system. Accord-
ing to the classical laminate theory it is commonly assumed that a first failure in a single
lamina simply reduces the overall stiffness, whereas the laminate is able to withstand
further monotonic load increase until the last lamina fails. This simple approach is com-

Figure 2.5: Fibre and inter-fibre failure modes (Puck (1996))
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monly known as the first-ply failure (FPF) and last-ply failure (LPF). IFF is usually the
first failure to occur in a laminate, and in the majority of cases this failure is non-critical.
In a laminate it is assumed that an IFF crack always runs through the whole thickness of
the layer, but does not continue in the adjacent layers. Therefore, the load is transferred
around the crack through the adjacent layers and the cracked layer can still carry loads
in its uncracked regions. A layer inside a laminate never fails completely in IFF because
of the adjacent layers. Only a characteristic damage state is reached where the layer is
saturated with cracks, but the layer still has a small percentage of its original stiffness.
Figure 2.6 illustrates this effect in a 0°/90°/0°-laminate under σx-load. Typically, an IFF
in the 90°-layer occurs first in such a load case. At the macroscale stresses and strengths
are assumed to be homogeneous in a lamina, but in reality they are not, of course. Due
to the stochastic fibre-distribution stresses and strengths are inhomogeneous at the mi-
croscale. Therefore, only one crack occurs first at the weakest spot. The crack then
spreads throughout the whole layer, but stops at the layer boundaries. The stresses from
the 90°-layer are transferred into the adjacent 0°-layers over inter-laminar shear stresses
and back into the 90°-layer on the other side of the crack. Therefore, the first crack is not
very critical, because the additional stresses in the adjacent layers can be carried by the
fibres easily and the 90°-layer is weakened only locally around the crack.

First crack

Characteristic damage state

0°
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0°

cracks
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Figure 2.6: Stress distribution in laminate at first crack and at characteristic damage state

In contrast to IFF a FF weakens the laminate so drastically that it is the LPF, because the
load of the broken fibres can’t be redistributed in the laminate. Of course, thick laminates
made of many layers may be able to redistribute loads, but the majority of lightweight
composite structures do rather consist of as few layers as possible.

2.4 Textile Composites

Textile composites have mainly been developed to enable an industrialization of com-
posites manufacturing, i.e. to cut down price and production time. The mechanical
properties have, therefore, been compromised, mostly due to the increased fibre misalign-
ment, see Bibo, Hogg, Backhouse, and Mills (1998); Godbehere, Mills, and Irving (1994);
Truong, Vettori, Lomov, and Verpoest (2005); G.-C. Tsai and Chen (2005); Wang (2002).
However, textile composites have advantages over UD-composites in through-thickness
strengths, delamination resistance and crashworthiness, see Dransfield, Baillie, and Mai
(1994); Jain, Dransfield, and Mai (1998); Mouritz, Leong, and Herszberg (1997).
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2.4.1 Types of Textile Composites

Various types of textile composites are in common use with different textile architectures.
For high performance structures, fibre architectures, which are capable of utilizing the full
fibre potential are favored. Therefore, textile architectures without continuous fibre direc-
tions, like knitted fabric reinforcements or randomly oriented milled fibre composites, are
only useful for applications without high demands on mechanical performance. Continu-
ous aligned fibre textile preforms for lightweight structures can generally be categorized
in five main groups, with increasing fibre misalignments:

• Filament winding composites,

• Non Crimp Fabrics,

• Woven Fabrics,

• Braided Fabrics.

• Knitted Fabrics.

The winding process is different from the other textile manufacturing processes, as it is not
restricted to the use of continuous dry fibre rovings. It is used for fabricating composites
out of continuous fibres that are wound around a rotating, removable mandrel. Thus,
it is also a combination of layer production and lay-up in one process, although it can
also be used for lay-up alone. If it is used for lay-up only, it is clear that a multitude of
basic materials can be used, from pre-impregnated UD-layers to dry textile layers, e.g.
woven fabrics, or pre-impregnated textile layers. If fibre rovings are used, the filament
winding technology provides most accurate fibre orientations and thus, can be regarded as
an UD-composite from a mechanical point of view. A certain stitching yarn or interwoven
configuration is not required. Therefore, the mechanical properties are similar to UD-
composites, while the geometry is restricted according to the producibility of the winding
technology.

Non-crimp fabric (NCF) reinforcements are manufactured by placing tows at the required
orientations in discrete layers and stitching them together using a lightweight textured
polyester thread. In the optimal case the stitching thread dissolves in the resin system dur-
ing the curing process and the reinforcement fibres remain in a straight-lined orientation.
These reinforcements are generally considered to offer mechanical properties superior to
those available from woven reinforcements since the tows remain straight. Nevertheless,
it is assumed that the material properties of NCF materials are significantly lower due
to the fibre waviness compared to UD-composites. Concerning textile composites, the
NCF material probably provides the highest potential for the construction of lightweight
structures. Therefore, it is an interesting prospect to analyze the NCF material by an
enhanced experimental evaluation and numerical models on micromechanical level.

For woven textiles, various weave styles exist that exhibit different grades of fibre crimp. A
plain weave, for example, consists of two layers of tows in which every tow of the first layer
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Figure 2.7: Multiaxial non-crimp fabric

is interwoven with each tow of the other layer. In an 8-harness satin weave, only each 8th
tow is interwoven and the two layers are therefore less connected. The drapability of woven
textiles is generally relatively good and increases with less connections between the layers.
For the in-plane mechanical properties, the same applies, because each weave between
the layers implies additional fibre crimp. These small periodical fibre misalignments are
commonly described as fibre undulations.

Braided composites are basically a combination of filament winding and woven textiles, as
they are made of tows woven around a certain geometry. A triaxial braid provides a third
tow parallel to the component axis. The geometry inside the braid can be removable, or
persist inside during the infiltration process. Braided composites are commonly used for
long, tubular components like stiffeners, bars and tubes.

Knitted fabrics resemble common textiles most. The tows are heavily undulated and
interlocked. Therefore, they provide an excellent drapability of the dry fabric, but very
poor mechanical performance.

However, several combinations of these techniques exist. The biaxial weft-knit fabric
presented in chapter 7 for instance consists of non-crimped main reinforcements that are
held together by a weft-knitted yarn. Therefore, it combines the advantages of high
drapability and good mechanical performance.

Generally textile fabrics and woven composites are manufactured by a process, wherein a
warp thread is woven with a weft thread. Obviously this process leads to small periodical
fibre misalignments on a micromechanical level due to interlacing of crossing tows. These
misalignments decrease the in-plane material properties. The basic idea of non-crimp
fabric materials is to align the fibres in a precise continuous orientation with as few
undulations as possible.

Manufacturing of Textile Composites

An important aspect to understand the material behaviour, is their manufacturing. The
fibre architecture and lay-up of the preforms is done in a “dry” state, i.e. without the
resin. This saves cost significantly compared to prepreg production, because storage cost
is reduced and handling is simplified. Furthermore, the drapability of the dry preforms
is higher by far, although also dependent on the preform itself, and more complex com-
ponents can be formed. After lay-up, the dry laminate is impregnated with a liquid resin
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system by infusion, called liquid resin infusion method (LRI). This impregnation process
is responsible for numerous fibre undulations due to the viscosity of the matrix.

The liquid resin infusion processes can be classified according to the resin impregnation
technique and tooling. The traditional method is known as hand lay-up, in which a
dry fibre reinforcement preform is cut to the desired shape and placed in a simple one
sided mould. Resin systems are applied in liquid form to the preform by hand. The
lamina is compacted by a roller and cured under ambient temperature or in an oven. This
process enables a very low cost tooling but is restricted to a relatively low fibre volume
fraction and material quality according to unprecise fibre orientations, undulations and
void entrapments. Hence, this process is comparatively unimportant for the production
of high performance structures.

The vacuum assisted infusion technology provides a closed mould and higher fibre volume
fractions compared to the hand lay-up. The production procedure is slightly reminiscent
to the prepreg process, in which the preform is assembled in a single sided mould and
sealed under a vacuum bag. The resin is injected in the system at atmospheric pressure
through an inlet and flows through the preform to the vent. Because of the low tooling cost
and the environmental producibility this process is established for the production of large
components and structures such as boat hulls and future airplane fuselage. Additionally
the process is promoted by the ability to make high quality parts with low void content
and high fibre volume fraction.

The resin transfer moulding (RTM) process provides relatively good material quality but
requires expensive tools. Thus, RTM is especially suited for production of high volume
applications. In the RTM process a dry textile preform is placed between a pair of rigid
moulds, which are usually from metal. The liquid resin is injected under pressure and
flows through the cavity of the mould towards a vent, which is maintained at atmospheric
or lower pressure. The parts produced by this process have excellent dimensional accu-
racy, surface finish and a high potential for good mechanical properties and reproducible
quality. Although only smaller parts are producible than with the vacuum bag assisted
injection, the RTM process is used extensively for commercial production, especially in
the automotive industry.

There are additional processes for the infusion of textile composites with more or less
modifications on the above described technologies. An advanced interesting possibility
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Figure 2.8: Liquid resin infusion processes for textile preforms Kleineberg et al. (2002)
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provide the autoclave assisted injection, for example the single line injection (SLI) process,
which was developed at the DLR Herrmann, Pabsch, and Kleineberg (2001). The SLI
process is a vacuum assisted infusion process in combination with an autoclave to assure a
precise fibre volume fraction and minimal fibre undulations provided by a low-cost tooling
using a single sided mould.

Generally textile composites provide the possibility to integrate different components in
one structure. This enables the possibility to reduce manufacturing cost, material amount,
and weight of a structure. Therefore, textile structures provide an interesting prospect
for lightweight and economical structures. A detailed evaluation of the NCF material is
an essential step towards a qualified application of high performance lightweight struc-
tures. Thereby, the analysis on a micromechanical level seems to be a promising method,
particularly for the stiffness and strength prediction of three dimensional reinforced NCF
materials.

2.4.2 Material Characteristics of Textile Composites

The material behaviour of textile reinforced composites is generally the same as for UD-
Composites. Basically two main differences in experimental behaviour are important:

1. Due to the textile architecture and the manufacturing process textile composites
exhibit increased fibre waviness.

2. The smallest unit available for experimental testing is a textile layer.

Fibre waviness, misalignment, crimp or undulation compromises the mechanical behav-
iour of textile composites, because the bending stiffness of the fibres is negligible compared
to the longitudinal stiffness. Fibre waviness occurs systematically due to the textile ar-
chitecture, for example in woven fabrics, and stochastically due to the manufacturing
inaccuracies. Systematical fibre waviness does not occur in UD-composites and is rela-
tively critical, because it is uniformly distributed over a certain area and thus stimulates
fibre kinking under compression. The flow of the viscous resin through the fabric dur-
ing infiltration process causes stochastic fibre waviness, that is also unfavorable under
compression. It occurs in UD-composites as well, but to a lesser extent.

Under tension, undulated fibres have to straighten before they can carry the full load.
Therefore, the stiffness increases in the first load cycle, but this is effect is rather unimpor-
tant, the accompanying microdamage in the matrix is probably more significant. Ulbricht
and Haasemann (2007) report a significant change in the textile architecture of a biaxial
weft-knitted fabric during a bending test, see Figure 2.9. It is clear that the tension in
the knitting yarn in the manufacturing process thus has an important influence, not only
on the drapability, but also on the mechanical performance.

The fact that the smallest unit available for testing is a textile layer does not influence
the mechanical behaviour of a textile composite itself, but makes understanding the be-
haviour much more complicated . A textile layer is more of a laminate than a layer.
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Figure 2.9: Computer tomography of biaxial weft-knitted fabric before and after bending
test, Ulbricht and Haasemann (2007)

Its material symmetry is orthotropic, thus, unless only in-plane properties are required,
nine instead of five material stiffnesses and strengths have to be determined. Through-
thickness properties are nearly impossible to determine, because the thickness of a textile
layer is too small for experimental testing devices. To produce a thicker textile layer is
neither possible. Therefore, textile layers are often treated as laminates of UD-layers with
decreased properties according to knock-down factors.
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Figure 2.10: Stress-strain curves of biaxial weft-knitted fabric under different load direc-
tions, Ulbricht and Haasemann (2007)

Unfortunately, the detection of failure and the assignment of failure in a textile layer is not
an easy task, because only FF is clearly visible in a load-displacement curve. In Figure 2.10
FF is depicted by the end of the curve, but from experience made with UD-composites it
is most likely that IFF occurs earlier and thus yields a nonlinear stress-strain-curve. In
a UD-layer IFF is determined by total failure under load in transverse direction. This is
not possible for textile composites, because of multiple fibre directions. Therefore, IFF
is detected either optically, see Figure 2.11 or acoustically, Hamstad (1986), but both
methods have significant weaknesses. An optical determination of a crack density is not
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continuous in time and does not deliver a strain at which failure occurs, whereas an
acoustical detection does not deliver any information on the place of failure.

Figure 2.11: Strain rate dependent crack densities in biaxial weft-knitted fabric, increasing
strain rate from left to right, Hufenbach (2007)

A further difference of textile composites from UD-Composites are the epoxy resin pock-
ets that result from the textile architecture. Textile composites are manufactured with
relatively large fibre tows which are interwoven or stitched in geometrically complex pat-
terns, they contain significant volumes of resin pockets, which are recognizable in Fig.
2.12 as black areas. For the macroscale mechanical behaviour they are less significant,
their existence is only a visualization of the inhomogeneous fibre distribution, but due to
the plasticity of the epoxy resin, cracks seldom originate in the pockets. Edgren, Mattson,
Asp, and Varna (2004) describe that failure of NCFs begins with transverse cracks inside
fibre bundles. Resin pockets cause significant thermal residual stresses, that can be an is-
sue for the adjacent fibre bundles. Another technical difference between textile composites
and UD-composites is that infusible resin systems have particularly brittle mechanical fail-
ure behaviour. The infusible resin is optimized for a certain viscosity and provide usually
lower allowable strains compared with the resin system used for UD-composites.

Figure 2.12: Fibre waviness and resin pockets on micromechanical level (undulations) of
a stitched NCF Sickinger and Herrmann (2001)



3 Elastic-Plastic Material Models

In this chapter, two material models are presented: one for epoxy resin and one for fibre
bundles, see also Vogler, Ernst, Hühne, and Rolfes (2007). Both models share one main
concept, they use invariant-based, quadratic yield criteria to model pressure-dependent
hardening. The required material parameters are hardening curves that can be taken
directly from experimental stress-strain curves.

It should be stressed here that the identification and the number of material parameters
are crucial for the usability of a material model. The more material parameters have to
be determined, the more expensive tests have to be done. On the other side, a model
with a small number of parameters is limited in its possibilities to describe nonlinearities,
because it requires very restrictive assumptions. However, a high number of material
parameters does not guarantee a realistic description of the material behaviour. Only the
assumptions made in a material model do matter for the quality of its results. If, however,
the physical meaning of the material parameters is to abstract or even unclear, the user of
the material model may not be able to verify the validity of his input and is thus unable
to judge upon the quality of his computations. In this sense, hardening curves are very
good material parameters, because they have an obvious physical meaning that can be
judged easily.

For epoxy resin, an isotropic elastic-plastic material model is presented in sec. 3.1. Char-
acterizing the transversely isotropic behaviour of the fibre bundles, a transversely isotropic
elastic-plastic material model is developed in sec. 3.2. As described in Chapter 2, both
materials exhibit viscous material behaviour, but this is neglected here. The presented
material models are used for quasistatic loads. Failure of the materials is described in the
following Chapter 4.

3.1 Isotropic Elastic-Plastic Material Model for Epoxy

Resin

Epoxy resin is an isotropic material that exhibits a nonlinear and pressure-dependent
behaviour, see Section 2.1. A phenomenological material model was chosen here, that
models the complete nonlinearity of the material via plasticity. It is assumed that up to
the failure stress, only plastic hardening takes place, afterwards damage is applied to model
softening, see Section 4.1. Therefore, the material model is only useful for monotonically
increasing loads at low strain rates. Considering that the unit cell computations at micro-
and mesoscale, where this material model shall be applied, are subjected to such loads, it
becomes clear that it fulfills its purpose.

25
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Apart from the nonlinear stress-strain curves, epoxy resin exhibits a pressure dependency
as well, i.e. the hydrostatic pressure has an influence on the nonlinear material behaviour.
Hydrostatic pressure does not affect epoxy resin in the linear regime, but the end of the
linear regime, i.e. plastic hardening starts at lower stresses under tension. Therefore, a
pressure-dependent yield surface is chosen. Furthermore, the occurring plastic strains are
also pressure dependent, they are very small under tension, very high under shear and
compression. Therefore, the ongoing hardening process, i.e. the parameters of the yield
surface, is described by two hardening curves, one under tension and one under shear.

3.1.1 Yield Surface

To account for different yielding behaviour under uniaxial tension, uniaxial compression
and simple shear (see fig. 3.5), a quadratic yield surface is chosen Haufe, Bois, Kolling,
and Feucht (2005). In terms of the first two stress invariants hydrostatic pressure p and
von Mises stress σvm, the yield locus can be written as

f = σ2
vm − a0 − a1p , (3.1)

whereby

p =
1

3
σii and σvm =

√
3

2
sijsij . (3.2)

The term sij is the stress deviator tensor. Notations p = I1 and σvm = J2 are chosen
here to distinguish the isotropic invariants from the transversely isotropic invariants in
the following Section 3.2. Hydrostatic pressure p is positive for hydrostatic tension and
negative for hydrostatic compression, von Mises stress σvm is always positive. The
remaining parameters a0 and a1 are determined from hardening curves.

Experimental results for epoxy resin RIM135 are available from an uniaxial tensile test by
ADDEN and a simple shear test by FIEDLER, see Figure 2.1. How the hardening curves

σt = σt(ε̄
pl) = tensile hardening curve,

σs = σs(ε̄
pl) = shear hardening curve (3.3)

are extracted from these stress-strain curves is described in Section 3.3. During the
computation, the parameters a0 and a1 are calculated from these hardening curves by
the plasticity algorithm and thus, the experimentally obtained test data are reproduced
exactly in numerical simulations, see sec. 3.1.3. The remaining parameters a0 and a1 are
given by

a0 = 3σ2
s ,

a1 = 3
σ2

t − 3σ2
s

σt

. (3.4)
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The yield stresses σs and σt are determined from the hardening curves eq. 3.3 in every
time step, depending on the accumulated plastic strain ε̄pl. Hence, the experimentally
measured yield stresses for uniaxial tension and pure shear are recovered exactly in the
material model. Although only two hardening curves are considered, other stress states
are properly regarded in the yield locus eq. 3.1. It should be noted that this yield surface
does not allow plastic flow under pure hydrostatic compression.

3.1.2 Flow Rule

Generally, the flow rule that determines the direction of flow, is either formulated as
associated or non-associated flow. Associated flow leads to plastic strain rate in terms
of the normal vector to the yield surface. However, assuming an associated flow rule,
the plastic Poisson’s ratio, defined as the ratio of transverse to longitudinal plastic strain
rate, is not reflected in a correct way under hydrostatic compression. In some cases even
physically nonsensical values follow for the plastic Poisson’s ratio. Further, there is no
possibility to control the volumetric plastic straining. The assumption of a von Mises
plastic potential implies plastic flow under constant volume, i.e. νp = 0.5, which is not
a correct assumption for epoxy resin. Experiments show that the plastic Poisson’s ratio
depends on hydrostatic pressure and in particular that there is a different lateral behaviour
in tension and in compression, see Fiedler et al. (2001). Assuming an associated flow
rule, the volumetric plastic straining under pressure is overestimated. Under hydrostatic
compression, the associated flow rule yields an increase in volume, which in turn leads to
unrealistic results. To account for a realistic assumption for νp and to control the lateral
plastic straining in dependence on hydrostatic pressure, the plastic potential is assumed
as (see Haufe et al. (2005)):

g =
√

σ2
vm + αp2 . (3.5)

The amount of dilatancy or compression, i.e. the increase or decrease in material volume
due to yielding, can be controlled with the flow parameter α. It correlates to the plastic
Poisson’s ratio νp under uniaxial loading:

νp =
9− 2α

18 + 2α
⇒ α =

9

2

1− 2νp

1 + νp

(3.6)

Plausible flow behaviour is given for 0 ≤ νp ≤ 0.5, which is equal to 0 ≤ α ≤ 9
2
. If the flow

parameter α is set to zero, there is no change in material volume when yielding occurs
and the von Mises plastic potential is recovered. The plastic potential is illustrated
in Figure 3.1. However, with this plastic potential and the quadratic yield surface the
differences between associated and non-associated flow are very small under tension and
shear.

3.1.3 Hardening Formulation

To describe the hardening behaviour under plastic flow, a nonlinear isotropic hardening
model is used. Hardening curve is input via tabulated data. That is, the hardening
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data obtained from uniaxial tension and simple shear test can directly be input in terms
of load curves giving the yield stress as a function of the corresponding plastic strain.
Consequently, the hardening is dependent on the state of stress and not only on the
accumulated plastic strain. Figure 3.1 illustrates how hardening is dependent on the
input curves, displayed on the right side. It shows the yield surfaces fn and fn+1 of the
time steps tn and tn+1 in σvm-p-invariant-plane. From the equivalent plastic strain ε̄pl of
each time step, shear stress and uniaxial tension stress are taken out of the hardening
curves. The yield surface is then defined by the shear stress and the uniaxial tension
stress from the hardening curves.

p
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f =0
n+1

f =0
n

3
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biaxial
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shear uniaxial
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shear hardening
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Figure 3.1: Representation of plastic potential, yield surface and failure surface in σvm-p-
invariant-plane

As the measurement results from material testing are commonly provided as true stresses
over true total strains, the hardening curves must be prepared by subtracting the elastic
part of the strains from the total strains:

εpl
t = εt −

σt

E
,

εpl
s = εs −

σs

2G
. (3.7)

During the computation, only one equivalent plastic strain ε̄pl is used that is given by:

ε̄pl = εpl
t =

2√
3
|εpl

s | . (3.8)

If the test results are given in engineering stresses and strains, a conversion into true
stresses and true strains has to be done. The concept of tabulated input of hardening
data allows for a straight forward treatment in computation. The test results that are
reflected in the load curves, are used exactly by the material model without fitting to any
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analytical expression. There is no need for parameter fitting. Yet, in reality things are not
always perfectly clear and neither is the determination of the starting point of plasticity
in an experimental stress-strain curve. Therefore, a parameter identification procedure,
described in Section 3.3 has to be carried out. The load curves expected as input are
briefly described in fig. 3.2
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Figure 3.2: Preparation of experimentally obtained hardening curves for input as tabu-
lated data: Total strains have to be converted into plastic strains by eq. 3.7

3.1.4 Numerical Treatment

The present model has been implemented as a user-defined material into ABAQUS implicit
(user interface UMAT) and ABAQUS explicit (user interface VUMAT). Starting from the
additive decomposition of the strain increment at time tn+1

∆εn+1 =εn+1−εn , (3.9)

the trial stress, assuming elastic behaviour, is computed as

σtrial
n+1 = σn +C :∆εn+1 . (3.10)

Checking the yield surface

f = f(σtrial
n+1, ε̄

pl) (3.11)

indicates elastic either (f ≤ 0) or plastic (f > 0) loading. In the case of plastic loading,
a classical elastic-predictor plastic-corrector scheme is applied for stress integration, see
Simo and Hughes (1998) or Hughes (2003). The increment of the equivalent plastic strain
can be written as
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∆ε̄pl
n+1 =∆λn+1 ‖mn+1‖ . (3.12)

where ∆λ is the sought plastic multiplier. The direction m of the plastic flow in the
case of a non-associated flow rule is given by the derivative of the plastic potential g with
respect to the stresses :

mn+1 =∂g(σn+1)/∂σn+1 . (3.13)

Hence, the stresses can be calculated through

σn+1 =σtrial
n+1−∆λn+1C :mn+1 (3.14)

and the internal variable is updated by

ε̄pl
n+1 = ε̄pl

n +∆λn+1 ‖mn+1‖ . (3.15)

Inserting in the active yield surface eq.3.11 formally leads to a nonlinear equation in ∆λn+1

which is solved explicitly by the Newton-Raphson method. Fig. 3.3 shows an illustration
of the applied elastic predictor-plastic corrector integration algorithm. From the stress
state of the current time σn, an elastic prediction σtrial

n+1 is done firstly. Subsequently, with
the Newton-Raphson method the searched stress state σn+1 is iteratively searched via
radial return algorithm.
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Figure 3.3: Radial return algorithm

3.2 Transversely Isotropic Elastic-Plastic Material Model

for Fibre Bundles

A fibre bundle, or UD-composite, is a transversely isotropic material that exhibits nonlin-
ear and pressure dependent behaviour, as described in Section 2.3. Nonlinear behaviour in
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longitudinal, i.e. fibre, direction is neglected, because of its small magnitude. In transverse
direction, the nonlinearity stems from viscosity, plasticity and damage, but the determina-
tion of the fractions is very difficult, as it is for epoxy resin. Since the presented material
model is used for monotonically increasing, quasistatic loads, the nonlinear behaviour is
modelled as purely plastic. Pressure-dependent hardening can be observed in transverse
direction as well. Therefore, a material model equivalent to the isotropic material de-
scribed above is presented here. Due to the transversely isotropic material symmetry,
other invariants are required. An additive decomposition of the infinitesimal strain tensor
into an elastic and a plastic part is assumed. For both the elastic and the plastic part of
the transversely isotropic material model, the representation of the constitutive equations
is carried out in the format of isotropic tensor functions by means of structural tensors.
A further description of invariant theory is given by Boehler (1987).

3.2.1 Elastic Stress-Strain Relations

Transversely isotropic materials are characterized through a preferred direction a. Thus,
the material response is invariant with respect to arbitrary rotations around this preferred
direction a, to reflections at fibre parallel planes and with respect to the reflection at that
plane, whose normal is a. These are the group of symmetry transformations for transverse
isotropy. Fibre bundles, as in the rovings, are a typical representative of transversely
isotropic material models. The structural tensor A of transverse isotropy, which represents
the materials intrinsic characteristic, is defined as the dyadic product of the preferred
direction a

A = a⊗ a (3.16)

As only small elastic deformations are considered, the assumption of HOOKE’s linear
elasticity law σ = σ̂(ε) is justified. Postulating hyperelasticity, the first derivative of the
free energy function Ψ̂ with respect to the strains ε delivers the stresses σ and the second
derivation with respect to the strains ε gives the elasticity tensor Ce. In case of transverse
isotropy, the free energy function is formulated in isotropic invariants of the strain tensor
ε and the structural tensor A. To derive a representation of Ψ̂ and the infinitesimal
stress tensor σ as isotropic tensor-functions, the functional basis of the two symmetric
second order tensorial arguments σ and A is needed. Assuming the stresses to be a linear
function of the strains and providing a stress free undistorted initial configuration, i.e.
σ(ε = 0) = 0, terms are neglected, which are linear or cubic in the strains. This enforces
the elasticity tensor Ce to be constant and yields a formulation of the free energy function
with five elasticity constants λ, α, µL, µT and β describing the transversely isotropic
material behaviour:

Ψ̂(ε,A) :=
1

2
λ( tr ε)2 + µT tr (ε)2 + α(aεa) tr ε+

2(µL − µT )(aε2a) +
1

2
β(aεa)2

(3.17)

For the stresses we obtain
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σ = λ( tr ε)1 + 2µT ε + α(aεa 1 + tr εA)

+2(µL − µT )(Aε + εA) + βaεaA
(3.18)

and the elasticity tensor is

Ce = λ1⊗ 1 + 2µT I + α(A⊗ 1 + 1⊗A)

+2(µL − µT )IA + βA⊗A .
(3.19)

Hereby, the 4th order tensor IA in index notation reads AimIjmkl + AjmImikl. In matrix
notation the 4th order elasticity tensor of transversely isotropic material for a preferred
X1-direction in a Cartesian coordinate system, i.e. a = [1, 0, 0]T , reads:

Ce =



λ + 2α + β + 4µL − 2µT λ + α λ + α 0 0 0

λ + α λ + 2µT λ 0 0 0

λ + α λ λ + 2µT 0 0 0

0 0 0 µL 0 0

0 0 0 0 µL 0

0 0 0 0 0 µT


(3.20)

The transformation from engineering constants to those of the invariant representation
and vice versa are listed in Table 3.1.

3.2.2 Transversely Isotropic Yield Surface

A transversely isotropic yield surface as an extension of a yield function following Rogers
(1987) and its numerical treatment in Schröder (1995) is proposed in this work. This
model is based on two assumptions, firstly on the assumption of plastic incompressibility
and secondly on the assumption that projections of stress onto the preferred direction a do
not induce plastic yielding. This condition is taken into account by a decomposition of the
stress tensor into an extra stress tensor σpind, inducing plastic yielding, and a remaining
reaction stress tensor σreac:

σ = σpind + σreac (3.21)

The assumption of plastic incompressibility is fulfilled with the postulation

tr σpind = 0 . (3.22)

Presuming inextensibility of the preferred direction a, in which plasticity is assumed not
to occur, leads to an additional constraint. The projection of the stress tensor onto the
fibre direction a must vanish:
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aσpinda = a⊗ a︸ ︷︷ ︸
:= A

: σpind = 0 . (3.23)

A is the structural tensor belonging to the fibre direction a. For the reaction stresses σreac

an ansatz of the form

σreac = p1 + Ta A (3.24)

is used. From eq.3.22 and eq.3.23 follow the stress components σreac and σpind:

σreac =
1

2
( tr σ − aσa)︸ ︷︷ ︸

p

1−1

2
( tr σ − 3aσa)︸ ︷︷ ︸

Ta

A

σpind = σ − 1

2
( tr σ − aσa)1 +

1

2
( tr σ − 3aσa)A.

 (3.25)

As it can be seen in the following equation, Ta can be interpreted as a fibre overstress,
exceeding the hydrostatical part of the stress tensor. The total stress of the fibre is

aσa = aσreaca = p + Ta (3.26)

To account for a possible influence of plastification in fibre direction, the projection of the
deviatoric part of the reaction stress tensor σreac onto a can be regarded:

a( dev σreac)a = aTa( devA)a = Ta a(A− 1

3
1)a =

2

3
Ta (3.27)

The construction of the anisotropic yield condition follows the same considerations as
the derivation of the hyper-elastic potential Ψ̂. The yield function has to be invariant
with respect to transformations belonging to the group of symmetry transformations for
transverse isotropy. The yield condition can be composed of the basic invariants of the
related stresses and the structural tensor. As a first approach, we refer to the invariant
sets used by Schröder (1995), who refers to the work of Spencer (1987) and Rogers (1987).

I1 :=
1

2
tr (σpind)2 − a (σpind)2 a

I2 := a (σpind)2 a

}
(3.28)

It can be observed that under in-plane shear stress considerable plastic yielding occurs
in UD-material, see Figure 2.3. Under uniaxial tension and uniaxial compression perpen-
dicular to the fibre direction, the material nonlinearities are rather small. To account for
this pressure dependency in the yield surface, a third invariant I3 is introduced in such a
way, that the projection of the stresses in fibre direction is not affected:

I3 := tr σ − aσa (3.29)
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The yield function as a function of the introduced invariants is formulated as:

f = α1 I1 + α2 I2 + α3I3 + α32I
2
3 − 1 (3.30)

with the flow parameters α1, α2, α3 and α32. This formulation of the yield surface makes
it possible to account for pressure dependency of UD-material. The derivations of the
yield surface are:

∂σf = ∂σf = ∂Ii
f ∂σIif =

α1 σpind + (α2 − α1) (Aσpind + σpindA) + α3(1−A) =: B

∂2
σσf = α1 Ppind + (α2 − α1) Ppind

A + 2α32(1−A)⊗ (1−A)

+α3(1−A) =: A

 (3.31)

with the projection tensor

Ppind = I− 1

2
(1⊗ 1) +

1

2
(A⊗ 1 + 1⊗A)− 3

2
(A⊗A) (3.32)

and (Ppind

A )ijkl := AimPpind

mjkl + AmjPpind

imkl.

Adev is the deviator of the structural tensor A, A is the constant bending tensor and B is
the first derivative of the quadratic yield locus. Thus, the yield function eq.3.30 reads in
the more general form:

f =
1

2
σ : A : σ + B : σ − 1 (3.33)

an associated flow rule is used for the transversely isotropic yield surface, because its
theory is less difficult and it is numerically more stable. The associated flow direction is
given by the partial derivative of the yield surface with respect to the plasticity inducing
stresses

mn+1 =∂fn+1/∂σpind
n+1 . (3.34)

It is possible that volume increases under hydrostatic compression, which is not physi-
cally reasonable. However, compared to the isotropic flow rule, this effect is smaller in
the transversely isotropic flow rule. The isotropic yield function increases monotonically
with increasing hydrostatic compression, because yielding is permitted under hydrostatic
compression, thus volume would increase under all stress states if associated flow is ap-
plied. However, the transversely isotropic yield surface does not contain hydrostatic stress
states, because the fibre-parallel stresses are not contained in the invariants and thus does
not increase monotonically with increasing invariant I3, that stands for hydrostatic com-
pression. The illustration of the transversely isotropic yield function in Figure 3.4 shows
that the volume change is incorrect only under mixed shear and hydrostatic compression,
where the yield fuction has a negative gradient. Therefore, the volume increase is delim-
ited to a small sector in the transversely isotropic flow rule, where volume change is small
anyway. Thus, this error is neglected here.
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3.2.3 Hardening Formulation

To determine the four material parameters α1, α2, α3 and α32 of the yield function,
four stress-strain curves are needed, which can either be provided by experiments or
by micromechanical computations. From the stress-strain curves hardening curves are
generated by subtracting the elastic strains in the manner of eq. 3.3.

This process requires a parameter identification described in section 3.3. The material
tests and their representation in stress space are:

• simple shear in the plane perpendicular to the fibre (transverse shear)

σ = dev σ = σpind =

 0 σY,⊥⊥ 0

σY,⊥⊥ 0 0

0 0 0

 , a =

 0

0

1


I1 = σ2

Y,⊥⊥ , I2 = 0 , I3 = 0

 f = α1σ
2
Y,⊥⊥ − 1 = 0

α1 = 1/σ2
Y,⊥⊥ (3.35)

• simple shear in the fibre plane (in plane shear)

σ = dev σ = σpind =

 0 σY,⊥‖ 0

σY,⊥‖ 0 0

0 0 0

 , a =

 1

0

0


I1 = 0 , I2 = σ2

Y,⊥‖ , I3 = 0

 f = α2σ
2
Y,⊥‖ − 1 = 0

α2 := 1/σ2
Y,⊥‖ (3.36)

• uniaxial tension and uniaxial compression perpendicular to the fibre

σ =

 0 0 0

0 0 0

0 0 σY,⊥

 , a =

 1

0

0


I1 =

σ2
Y,⊥

4
, I2 = 0 , I3 = σY,⊥

 f = α1

σ2
Y,⊥

4
+ α3σY,⊥ + α23(σY,⊥)2 − 1 = 0

The parameter α1 is known from the first material test (transverse shear), therefore
two parameters α3 and α32 remain to be determined. Inserting the yield stresses from
uniaxial tension σt

Y,⊥ and uniaxial compression σc
Y,⊥ for σY,⊥ in the yield function
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leads to an equation system with two equations and two unknowns from which the
parameters α3 and α32 can be obtained :

α32 :=

1

σt
Y,⊥

− 1

σc
Y,⊥

− α1

4
(σt

Y,⊥ − σc
Y,⊥)

σt
Y,⊥ − σc

Y,⊥
(3.37)

α3 :=
1

σt
Y,⊥

− α1

4
σt

Y,⊥ − α32σ
t
Y,⊥ (3.38)

yield surface

I
transverse shear

uniaxial
compression

biaxial
compression

uniaxial
tension

biaxial
tension

Figure 3.4: Yield and failure surface of the transversely isotropic material model in
√

I1-
I3-invariant-plane

In analogy to the σvm-p-invariant-plane for the isotropic yield locus, the transversely
isotropic yield locus can be illustrated in an invariant plane of the first and third invariant
I1 and I3. For convenience and for a better comparability with the invariant plane for the
isotropic model, the abscissa is the third invariant I3 and the ordinate is the square root
of the first invariant I1, see fig. 3.4. To clarify this representation, the stress states for
uniaxial, biaxial and pure shear loadings are indicated in fig. 3.4. Triaxial stress states are
not represented in this invariant plane, because stresses in fibre direction are assumed to
not induce yielding and so the projections of the stress tensor onto the preferred direction
are not reflected in the invariants I1 and I3. As illustrated in fig. 3.4, the ordinate
corresponds to a pure transversal shear stress state, the abscissa represents biaxial stress
states and the two dotted lines with a slope of 0.5 and −0.5 mark uniaxial tension and
compression loading states. The stress states and their representation in the I3-

√
I1-plane

are:

• transverse shear loading:
I1 = σ2

Y,⊥⊥ , I3 = 0

• uniaxial loading:

I1 =
(σY,⊥)2

4
, I3 = σY,⊥
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• biaxial loading:
I1 = 0 , I3 = 2σY,biax

3.3 Parameter Identification

The numerical stability of the presented plasticity algorithms is highly dependent on the
quality of the hardening curves provided. It must be assured that the yield surface widens
monotonically, because the algorithm does not converge for decreasing plastic stress with
increasing plastic strains. Besides, this effect is not physically plausible. Experimental
stress-strain curves do not always meet this criterion, oscillations are often incorporated.
Thus, firstly these curves have to be smoothed out for the algorithm. Secondly, the so-
called linear elastic region in the beginning is mostly rather non-linear, therefore it is not
exactly clear where hardening begins. The choice of the starting point for hardening in
each used stress-strain curve is influencing the yield surface. Each starting points has
to be chosen in correspondence with the other ones to ensure that the yield surface is
widening monotonically for each stress state.

For the isotropic yield surface, the following conditions must be fulfilled for each equivalent
plastic strain:

a0 > 0

a1 < 0

∆a0 > 0

−∆a0

∆a1
≥ −a0

a1

 (3.39)

The result of the parameter identification procedure can be seen in Figure 3.5. It shows
the stress-strain curves under uniaxial tension and simple shear of epoxy resin RIM 135
from tests compared to the outcome of the parameter identification.

Figure 3.6 shows a cut through the transversely isotropic yield surface for I2 = 0 and its
evolution with increasing equivalent plastic strain. This cut equals the isotropic σvm–p-
plane as far as possible, with

√
(I1) being representative for deviatoric stresses and I3 for

hydrostatic stresses. Different stress states, from biaxial tension to biaxial compression,
are marked with different colors. It can be seen that the yield surface widens monotoni-
cally, as desired, and that the hardening modulus is higher under compression than under
tension and shear.

It should be avoided to use ideally plastic behaviour, because it leads to localization of
plasticity in one element. If plastic strains are then considered as a measure for damage
initiation, which is a very common assumption, a mesh dependency of failure occurs that
does not converge for refined meshes. Compared to global strain of the whole model local
plastic strains in smaller elements are much higher and thus damage is initiated much
earlier. This localization and the following mesh dependency do not occur if a hardening
modulus is present, see also Figure 4.6. Besides, in (geometrically non-linear) three-
dimensional simulations ideally plastic behaviour can lead to material failure. Imagine a
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Figure 3.5: Stress-strain curves of epoxy matrix RIM 135 from tests and curves used in
computation

Figure 3.6: Widening of transversely isotropic yield surface with increasing equivalent
plastic strain

tension rod discretized with one volume element. While the material yields, the element
lengthens in tensile direction, but due to Poisson’s effect its area decreases. Therefore,
the applied tensile force goes to zero, because it is the product of the constant yield stress
multiplied with the vanishing cross section. Thus, to avoid these effects, plastic hardening
should always be present.
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Table 3.1: elasticity constants for transversely isotropic elasticity
• symmetry of the elasticity tensor:

ν12

E22

=
ν21

E11

;
ν13

E33

=
ν31

E11

;
ν23

E33

=
ν32

E22

• constants of invariant formulation:
λ = E22(ν23 + ν31ν13)/D

α = E22[ν31(1 + ν32 − ν13)− ν32]/D

β = E11(1− ν32ν23)/D + E22[1− ν21[ν12 + 2(1 + ν23)]]/D − 4µ12

µl = µ12

µt = µ23

D = 1− ν2
32 − 2ν13ν31 − 2ν32ν31ν13

• engineering constants:
E22 = E33, ν23 = ν32, ν12 = ν13, ν21 = ν31, µ12 = µ13

E11 = −(λµt − 4λµl − λβ − 4αµt + 2µ2
t − βµt − 4µlµt + α2)/(λ + µt)

E22 = −4µt(λµt − 4µlλ− βλ + 2µ2
t − βµt − 2αµt − 4µtµl + α2)/Dt

ν12 = 2µt(λ + α)/Dt

ν21 = (λ + α)/(2λ + 2µt)

ν23 = −(α2 + 2λµt − βλ− 4µlλ)/Dt

µ12 = µl

µ23 = µt

Dt = 4µlλ + βλ− 4µ2
t + 4µtα + 2βµt + 8µlµt − α2



4 Failure Criteria and Softening
Formulations

In this chapter failure criteria and softening formulations for epoxy resin, UD- and textile
composites are presented. A failure criterion, consisting of one or more failure conditions,
determines damage initiation, i.e. the moment when failure of a material starts. The
softening formulation describes the following failure of the material with softening.

Material softening leads to numerical instabilities that have to be accounted for. Wherever
a crack occurs, it localizes in a certain region, in reality as well as in simulation. In
reality each material has its characteristic crack width, that does mainly depend on the
homogeneity of the material, but in a simulation a crack localizes in only one element, if
no precautions are taken. Thus, a mesh-dependency occurs, i.e. the simulation does not
converge with a refined mesh. To avoid this, fracture energy regularization according to
Hillerborg, Modeer, and Petersson (1976) is used in the softening formulations presented
in this work.

4.1 Isotropic Failure Criterion and Softening Formulation

for Epoxy Resin

Failure of epoxy resin exhibits one main trait, pressure dependency. Strength under
compression is usually much higher than under tension. Therefore, a failure criterion
based on the invariants hydrostatic pressure p and von Mises stress σvm is presented
here, analogous to the material model described in section 3.1. Fractography has shown
that epoxy resin has two failure modes, ductile shear failure and brittle tensile failure. The
quantification of these modes is rather difficult and not always clear, sometimes a mixture
of both might occur. Therefore, the presented criterion consists of two phemenologically
derived failure conditions. To describe the softening and failure behaviour of epoxy resin,
an isotropic damage model is implemented in the material model. The material stiffness
degradation is controlled by a scalar damage parameter d.

4.1.1 Failure Criterion

Fiedler et al. (2001) propose a quadratic failure surface, that is defined over uniaxial
tensile and compressive strength. The parabolic failure surface opens in direction of
hydrostatic compression, i.e. no failure occurs under hydrostatic compression. To regard

40
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the material strength under pure shear as well, the failure surface is split into two parts
in this work, as illustrated in fig. 4.1 and fig. 3.1. Therefore, all input strengths can be
used directly and a least-square fit of three input strengths on two parabolic parameters
is avoided. In the region of hydrostatic tension, where brittle tensile failure is assumed
the failure surface has a formulation in analogy to the yield surface:

r = σ2
vm − b0 − b1p for p > 0. (4.1)

The failure criterion is fulfilled for r = 0 and stiffness degradation starts until the material
finally fails. The parameters b0 and b1 are obtained in the same manner as the parameters
a0 and a1 for the yield function eq. 3.4). Therefore, the material strengths of uniaxial
tension Rt and of shear Rs have to be inserted instead of the yield stresses in 3.4. In the
region of hydrostatic compression, where ductile shear failure takes place, a linear failure
surface, connecting the uniaxial compressive strengths Rc and the shear strength Rs in
the σvm-p-invariant-plane, is assumed (see fig. 3.1):

r = σvm − b2 − b3p for p < 0. (4.2)

The parameters b0, b1, b2 and b3 are obtained from

b0 = (Rs)2 (4.3)

b1 = 3
(Rs)2 − (Rc)2

Rc
(4.4)

b2 = Rs (4.5)

b3 = 3
Rs −Rc

Rc
. (4.6)

4.1.2 Damage Evolution and Stiffness Degradation

The damage evolution law describes the rate of degradation of the material stiffness once
the corresponding initiation criterion has been reached. A scalar damage variable d is
introduced to control the stiffness degradation Lemaitre and Chaboche (1988). At any
given time during the analysis, the stress tensor in the material is given by the scalar
damage equation

σ = (1− d)σeff , (4.7)

where d is the overall damage variable and σeff is the effective, i.e. undamaged, stress
tensor computed in the current increment. If the failure surface is achieved at any stress
state, the yield surface is forced to remain constant by setting the hardening modula to
zero and stiffness degradation, controlled by the scalar damage variable d, starts until the
material has lost its load-carrying capacity (d = 1), see fig. 4.1. In numerical analysis,
then the concerning elements are removed from the mesh.
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Figure 4.1: Damage formulation

The exact function of d is dependent on material as well as the scale of application. Usually
a macromechanical damage evolution that incorporates the in-situ effect is required for
the simulation of composite materials. Due to the in-situ effect embedded lamina do not
reach a final damage of one, or complete damage respectively, see e.g. Kumar and Talreja
(2003) or Puck (1996). However, in this work the evolution of mesomechanical cracks shall
be described, which are not investigated experimentally due to its small size. Therefore,
a common assumptions a exponential or linear functions, see Figure 4.2 are used here. A
fracture energy is used to determine its quantitative gradient in this work.
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4.1.3 Fracture Energy Regularization

Softening material behaviour, which results macroscopically in a loss of material stiffness
with adjacent failure, is preceded by the initiation and accumulation of microscopical
defects such as cracks, micro-pores, shear-bands or crazes, see Lemaitre and Chaboche
(1988). The initiation and accumulation of such defects are a matter of local defects and
are restricted to a local zone, whose size depends on the material. Lemaitre and Desmorat
(2005) give the width of the localizing zone, in which shear-bands or crazes develop, as a
material constant, see Table 4.1.

Table 4.1: Characteristic internal length Li of different materials

material crack width

Light alloys 0.2 to 0.5 mm

Steel 0.2 to 0.5 mm

Ceramics 0.1 to 1 mm

FRP 0.5 to 1 mm

Concrete 10 to 100 mm

When material softening occurs, the stress-strain relationship no longer accurately repre-
sents the material’s behaviour. Continuing to use the stress-strain relation introduces a
strong mesh dependency based on strain localization, such that the energy dissipated de-
creases as the mesh is refined. Figure 4.3 illustrates this effect for the example of a simple
tensile rod with different element sizes. Damage localizes in a single element, depicted by
a lighter color, all other elements remain undamaged. If a stress-strain relation is used to
describe the softening of the element, the size of the element influences the process and
ultimate failure occurs earlier in the global stress-strain curve for higher mesh refinement.
This effect can be overcome, when a stress-displacement response is used instead of a
stress-strain response.

The fracture energy proposal of Hillerborg et al. (1976) is used to reduce mesh dependency
by creating a stress-displacement response after damage is initiated. Using brittle fracture
concepts, Hillerborg et al. (1976) define the energy Gf required to open a unit area of crack
as a material parameter. The introduction of a characteristic internal length Li, which is
a measure for the size of the localized area, the softening response after damage initiation
is characterized by a stress-displacement response rather than a stress-strain response.
The crack localization area is characterized by multiple microcracks that dissipate energy
independently from each other until some of them coalesce into the macrocrack. It is
important to note that the fracture energy or strain energy release rates G that are
determined in experimental tests, e.g. double-cantilever beam or end-notch flexure test,
are therefore valid only for a macrocrack, including several microcracks, but not for the
microcracks themselves. The energy Gf required to open a unit area of crack, is
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Figure 4.3: Mesh-dependency and regularization of softening

Gf =

∫ ε̄pl
ult

ε̄pl
fail

LiσY dε̄pl =

∫ ūpl
ult

ūpl
fail

σY dūpl . (4.8)

The implementation of this stress-displacement concept in a finite element model requires
the definition of a characteristic element edge length Le associated with an integration
point. The fracture energy is then given as

Gf =

∫ ε̄pl
ult

ε̄pl
fail

LeσY dε̄pl =

∫ ūpl
ult

ūpl
fail

σY dūpl . (4.9)

This expression introduces the definition of the equivalent plastic displacement ūp as the
fracture work conjugate of the yield stress σy after the onset of damage:

ūpl = Leε̄
pl . (4.10)

The definition of the characteristic length Le is based on the element geometry. For solid
elements the cube root of the element volume is used. This definition of the characteristic
length is chosen because the direction, in which fracture occurs, is not known in advance.
Therefore, elements with large aspect ratios will have rather different behaviour depending
on the direction in which the crack evolves. This leads to a mesh sensitivity of the
simulation results, see section 4.1.5.1. To avoid this problem voxel-elements with an
aspect ratio of unity should be used, see section 4.1.5.
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The introduction of the characteristic element edge length Le means, that occurring lo-
calized strains are ”smeared” or distributed over the particular element width.

To determine ūpl
ult not only the value of the dissipated fracture energy is needed, but

also the curvature in the softening regime. As mentioned above the exact curvature is
not known, but commonly assumed to be linear or exponential. For the linear case the
equivalent plastic displacement at ultimate failure

ūpl
ult =

2Gf

σY

+ ūpl
fail (4.11)

is needed for the determination of the damage variable

dlin =
ūpl − ūpl

fail

ūpl
ult − ūpl

fail

. (4.12)

In the case of exponential softening the damage variable can be determined directly

dexp = 1− e
−σY

Gf
∗(ūpl−ūpl

fail) . (4.13)

The damage variable approaches ultimate failure asymptotically, therefore d = 0.9999 is
taken to be ultimate failure. Both functions for d are shown in Figure 4.2. For regular-
ization it is important that

∫ ∞

0

1− dexp =

∫ 1

0

1− dlin . (4.14)

In both cases plastic displacements that occurred before failure ūpl
fail are subtracted, be-

cause it is avoided that plasticity localizes in only one element, see section 3.3. Figure 4.4
shows how the fracture energy regularization formulation works, if plastic deformations
occur in the model. Thus, assuming that plasticity before failure is mesh-independent, it
must not influence the regularization mechanism to alleviate mesh-dependency of failure.

Figure 4.5 shows the influence of different curvatures in the softening of the epoxy resin
on the stress-strain curves for a micromechanical unit cell, described in chapter 6 under
tension and compression. Curves are given for

1. no damage at all, only plastic hardening,

2. ideally plastic behaviour after failure criterion is fulfilled,

3. linear softening and

4. exponential softening.
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Figure 4.5: Stress-strain curves of micromechanical unit cell under tension and compres-
sion. Influence of softening on unit cell.

The first two curves are given as a comparison and to show the undamaged behaviour
of the unit cell. As described above the damage is applied on ideally plastic behaviour.
Generally, the exponential behaviour leads to an earlier failure of the unit cell, but this
effect is more apparent under compression. The explanation for the earlier failure in
general is the greater softening in the beginning of the exponential curve.

The reason for the greater effect of softening curvature under compression can be seen in
Figures 4.6 and 4.7. There, the damage or, for the computations without damage, the
equivalent plastic strain in the unit cell are shown. Under tension the ”crack” localizes
nearly in the same way, but under compression the localization zone is different depending
on the softening curvature. Linear softening leads to a longer crack, at one point it is
deviated from the path under exponential softening, obviously because the damage in
some elements does not evolute fast enough. A longer crack leads to an higher energy
dissipation overall and, thus, to a higher strength. However, the overall differences between
exponential and linear softening are rather small, because the fracture energy consumed
by the cracks are identical.
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(a) Linear softening, damage vari-
able

(b) Exponential softening, damage
variable

(c) Ideally plastic, equivalent plastic
strain

(d) Only hardening, equivalent plas-
tic strain

Figure 4.6: Influence of softening curvature on damage evolution in micromechanical unit
cell under compression.

In Figures 4.6 and 4.7 it can also be seen why ideally plastic behaviour leads to mesh-
dependent results. The localization zone, where plastic deformations occur, is just one
element thick and remains one element thick for a refined mesh. Thus, the local strains
are dependent on the element size and it is not possible to get reasonable result out of a
maximum strain criterion. When further plastic hardening still takes place, the localized
plastic zone is much wider and the mesh dependency is less pronounced. Under tension
the hardening modulus is very small, therefore this effect can hardly be seen in Figure 4.7
and the differences in the stress-strain curves in Figure 4.5 under ideally plastic behaviour
and under plastic hardening.
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(a) Linear softening, damage vari-
able

(b) Exponential softening, damage
variable

(c) Ideally plastic, equivalent plastic
strain

(d) Only hardening, equivalent plas-
tic strain

Figure 4.7: Influence of softening curvature on damage evolution in micromechanical unit
cell under tension.
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4.1.4 Tension Rod Regularization

In order to demonstrate the functionality of the presented fracture energy regularization
a tension rod is computed with different mesh refinements. The dimensions of the rod are
2 x 1 x 1 mm, it is discretized with 2 x 1 x 1, 4 x 2 x 2 and 8 x 4 x 4 volume elements,
respectively, it is loaded displacement-driven in 1-direction. Figure 4.8 gives the load-
displacement curves of the tension rod dependent on the discretizations. Prerequisite for
the regularization formulation to work is that damage occurs only in one element (row),
which is fulfilled for all discretizations. It can be seen that the regularization formulation
generally works very well. The curves do not match exactly, because of Poisson’s effect,
that has a considerable influence at higher mesh refinement, because it forces the elements
to adopt shear deformations. However, this small inaccuracy is negligible.
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Figure 4.8: Load-displacement curve of tension rod for different mesh refinement

4.1.5 Voxel Discretization

Conventional modelling leads to a number of irregular elements, in particular for a me-
somechanical unit cell of a textile composite, but also for the micromechanical unit cell.
In combination with the strain energy based regularization irregular elements lead to a
mesh-dependent solution, see Ernst, Hühne, and Rolfes (2006), because the regularization
requires elements with an aspect ratio of unity. To avoid this drawback of irregular ele-
ments, the unit cells shown here are meshed with voxel elements, meaning ”volume pixel”.
They have an aspect ratio of one, hence the geometry can only be approximated because
the mesh is regular.
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Another advantage of the approximate meshing is that it simplifies the discretization of
complicated geometries in the mesomechanical unit cell and the application of periodic
boundary conditions. For periodic boundary conditions it is an enormous simplification
to have matching opposite faces of the RVE, because a node-by-node connection can be
established, see seection 5.2. Gunnion (2004) has shown that the voxel method is well
suited to determine stiffness of textile composites.

Disadvantage of the voxel mesh are the singularities that occur at the boundary between
two materials with different stiffness in the form of stress peaks. However, these stress
peaks can be smoothed out by use of plastic material behaviour, although a distortion
remains. Compared to a conventional mesh, a voxel mesh usually contains more elements,
but in an explicit analysis the size of the smallest element is rather more important than
the element number, because it determines the critical time step.

4.1.5.1 Influence of Irregular Elements

By the example of the square micromechanical unit cell, see chapter 6 the influence of
irregular elements in a conventional mesh shall be demonstrated here. The interface
between fibre and matrix is modelled perfectly in a conventional mesh, see Fig. 4.9. Two
meshes are shown, in Figure 4.9(a) the original mesh generated by ABAQUS and in
Figure 4.9(b) an altered mesh that has only elements with an aspect ratio close to one
at the interface between fibre and matrix. The influence of the irregular elements that
incur a mesh dependency is indicated by the different damage evolution in the meshes
shown in Fig. 4.9. In Fig. 4.9(a) it can easily be seen that the irregular elements in the
middle of the original mesh act as “crack-stoppers” and deviate the crack away from the
interface. In the altered mesh the damage evolutes along the interface. The reason for
this behaviour is that the characteristic element length LE ,see Sec. 4.1, is an isotropic
value, determined for each element as the cubic root of its volume. It is taken for each
direction and multiplied with the strains, see Eq. 4.10, hence irregular elements degrade
faster in one direction than in others.

(a) Original mesh, generated by
ABAQUS

(b) Altered mesh,

Figure 4.9: Damage evolution in conventional mesh dependent on mesh
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Whilst for this rather simple geometry the mesh-dependency comes out clearly, it is quite
cumbersome to prevent it by manually generating regular elements in sensitive areas.
Furthermore, it is not clear which areas are sensitive and require regular meshing, neither
before the simulation, nor after the simulation, because the mesh influences the result
of the simulation drastically. For more complicated textile fibre geometries it is almost
impossible to avoid irregular elements in sensitive areas. In a voxel mesh this kind of
mesh dependency does not occur, therefore it is very useful for application together with
the fracture energy approach. Figure 4.10 shows the damage evolution in the same load
case as in Figure 4.9

(a) 40x40 Elements (b) 160x160 Elements

Figure 4.10: Damage evolution under compression

4.1.5.2 Convergence of Voxel-Approach

The convergence of voxel-meshed square unit cells has been tested under transverse ten-
sion. Discretization ranged from 10x10 elements up to 163x163 elements, which is shown
in fig. 4.11.

The transverse stiffness predicted of the voxel-unit-cell is mainly influenced by two effects,
the volume fraction realized in the model and the number of elements used. Especially in
coarse meshes it is not always possible to generate the desired volume fraction, an uneven
element number, for example, will never give a volume fraction of vf = 0.5. Figure 4.12
shows the deviation of transverse stiffness of coarser meshes against the finest mesh used.
The approximate meshing algorithm does not always allow for an exact realization of the
targeted volume fraction, therefore only meshes with a volume fraction of exactly 50 %
have been selected and displayed.
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(a) 10x10 Elements (b) 163x163 Elements

Figure 4.11: Discretization of square unit cell
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Figure 4.12: Influence of discretization and volume fraction on predicted stiffness

The stiffness computed with a 163x163 elements mesh has been used as a reference value
for the predicted stiffnesses. Overall, the convergence is very good and the error is above
1% only for very coarse meshes.
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4.2 Transversely Isotropic Failure Criteria and Softening

Formulations for UD-Compsites

To describe failure of a whole multidirectional UD-laminate in one lamina an anisotropic
failure criterion is needed, in combination with an extensive experimental test program
to determine all required parameters. In contrast, failure of a lamina can be described by
a transversely isotropic failure criterion with much less effort. Therefore, failure of UD-
laminates is predicted as failure of the layers they are composed of. One layer is usually
discretized as one lamina with this method, but it is also possible to use more than one
lamina for each layer.

As input parameters strengths of a lamina under tension and compression in fibre Rt,c
‖ and

transverse Rt,c
⊥ direction as well as in-plane shear R‖⊥ can be experimentally determined.

According to Schürmann (2007) in fibre direction relatively reliable strengths can also be
determined by analytical micromechanics. For in-plane shear and transverse strengths,
including also transverse shear, micromechanical unit cell computations are presented in
chapter 6. The prediction of failure under a combination of these uniaxial loadings is
usually done in the failure criterion, because an experimental testing of biaxial load cases
would be too cumbersome.

Modelling softening and failure of UD-composites, usually two damage initiation condi-
tions for fibre failure and inter-fibre failure are introduced. The motivation for dividing
the failure criterion in two conditions are the different consequences of these failures and
thus, the different softening formulations invoked after failure initiation. If fibre-failure
is detected, all material properties are degraded, because a crack in fibre direction does
include matrix failure as well. Inter-fibre failure on the other hand does only affect the
matrix properties, the fibres are considered to remain intact.

In this work, softening formulations for UD-composites are used at different scales, which
makes an important difference. On the macroscale, in an UD-laminate, the softening
formulation for a single lamina has to consider the ”in-situ-effect” as well. Due to the
redundancy of the laminate, local inter-fibre failure does not necessarily lead to complete
failure of a lamina. In contrast, the lamina never fails completely, because softening
stops when the characteristic damage state (CDS) is reached, see section 2.3.2. On the
mesoscale a local entity of UD-composites is modelled in a unit cell and locally a complete
failure is possible. Therefore, the softening formulation has to be chosen depending on
the occurrence of the in-situ-effect.

4.2.1 Failure Criteria and Softening Formulations from Literature

A variety of failure criteria has been published in literature. Nahas (1986) gives a review
on about 30 criteria in 1986, another selection was compared in the World-Wide-Failure-
Exercise by (Hinton et al., 2004). The criterion of S. W. Tsai and Wu (1971) was published
among the first and is probably the most often used criterion. It employs a single global,
quadratic failure condition and thus is very efficient in computational cost. Due to the
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single global formulation it does not provide information about the type of failure, which
is, however, very important for the design engineer, on the one hand to judge upon the
criticality of the failure, and on the other hand to improve the laminate. The substantial
differentiation between fibre-failure and inter-fibre failure was first postulated by Puck
and Schneider (1969). It was taken up by (Hashin, 1980) and enhanced by the use of
invariants and a Mohr-coulomb fracture approach. The latter was considered to laborious
at that time, therefore it was no longer pursued until it was taken up again by Puck (1996).
Criteria that differentiate failure modes, e.g. Puck and Schürmann (2004), Cuntze and
Freund (2004), have proven their reliability in the WWFE.

A further outcome of the WWFE was that pre-failure non-linear material behaviour and
post-failure material softening are as well very important for a realistic failure description.
Non-linear material models have been described in section 3.2.

Twelve post-failure-theories for IFF with completely different approaches have been re-
viewed by Nahas (1986). In Figure 4.13 four models are shown that basically differ in the
stiffness reduction after IFF has occurred.

Figure 4.13: Post-failure softening approaches, taken from (Puck, 1996): (a) Hahn, Tsai-
method, (b) Petit, Waddoups-model, (c) Chiu-model, (d) Nahas-model.

In the following, failure criteria of Hashin, Puck and Jeltsch-Fricker are described in more
detail.

4.2.1.1 Hashin

The first main idea of Hashin (1980) was that the criterion should be invariant under
any rotation around the fibres. Therefore, the following invariants proposed by Mulhern,
Rogers, and Spencer (1967) were used:
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I1 = σ11 (4.15a)

I2 = σ22 + σ33 (4.15b)

I3 = τ 2
23 − σ22σ33 (4.15c)

I4 = τ 2
12 + τ 2

13 (4.15d)

I5 = 2τ12τ23τ13 − σ22τ
2
13 − σ33τ

2
12 (4.15e)

From these invariants Hashin (1980) states the most general transversely isotropic quadratic
approximation:

A1I1 + B1I
2
1 + A2I2 + B2I

2
2 + C12I1I2 + A3I3 + A4I4 = 1 (4.16)

The invariant I5 in (4.15e), which is of cubic order in stresses does not appear in the failure
criterion, to keep it quadratic in stresses. The four failure modes defined by Hashin are
tensile and compressive fibre and matrix failure. Each mode is associated with a set of
invariants that contribute to failure. This results in the following equations:

Fibre failure (
σ11

Rt
‖

)2

+
1

R2
⊥‖

(
τ 2
12 + τ 2

13

)
= 1 , σ11 > 0 (4.17)

−σ11

Rc
‖

= 1 , σ11 < 0 (4.18)

Matrix failure

1

Rt2
⊥

(σ22 + σ33)
2 +

1

R2
⊥⊥

(
τ 2
23 − σ22σ33

)
+

1

R2
⊥‖

(
τ 2
12 + τ 2

13

)
= 1 , σnn > 0 (4.19)

1

Rc
⊥

[(
Rc
⊥

2R⊥⊥

)2

− 1

]
(σ22 + σ33) +

1

4R2
⊥⊥

(σ22 + σ33)
2

+
1

R2
⊥⊥

(
τ 2
23 − σ22σ33

)
+

1

R2
⊥‖

(
τ 2
12 + τ 2

13

)
= 1 , σnn < 0 (4.20)

The orientation of the action plane and normal stress σnn is illustrated in Figure 4.14. In
analogy to Mohr’s failure theory the stresses σnn, τ1n and τnt are responsible for matrix
failure. The normal stress σnn is given by

σnn = σ22cos
2θ + σ33sin

2θ (4.21)

and used to distinguish between tensile and compressive matrix failure. Hashin did not
engage further in this theory, because he estimated its numerical costs would be too high.
However, it was taken up later by Puck.
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Figure 4.14: Definition of fracture plane angle θ

4.2.1.2 Puck’s Parabolic Criterion and Softening Formulation

As a continuation of Hashin’s work Puck (1996) developed an action-plane-based strength
criterion that is widely spread today and has shown its performance in the WWFE, see
Hinton et al. (2004). An important part in the success of this criterion is not only its
physical basis, but also the softening formulation provided in the context of the criterion
itself. The physical basis makes it possible to extract an interpretation of the significance
of failure out of the result and the softening formulation enables prediction of progressive
failure. Puck (1996) distinguishes two FF modes and three IFF modes, as described in
section 2.3.2, that are identified by four failure conditions altogether.

Fibre failure conditions

For FF, the simple conditions

σ1

Rt
‖

= 1 for σ1 ≥ 0 , (4.22)

− σ1

Rc
‖

= 1 for σ1 < 0 , (4.23)

are generally considered to be sufficient.

Inter-fibre failure conditions

In analogy to Hashin’s failure criterion, Puck evaluates IFF on the action-plane defined in
Figure 4.14. The transformation of the stresses from the ply coordinate system (x1, x2, x3)
to the (x1, xn, xt) coordinate system of the action plane is accomplished by
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→

→

→


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σt

τnt

τt1

τn1
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τ31
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(4.24)

where c = cos(θ) and s = sin(θ) have been substituted for a more compact notation.
Puck (1996) assumes that the normal stress σn of the action plane divides IFF into two
different modes. The stress exposure factor fE, also known as effort, is therefore given
dependent on σn

fE(θ) =

√(
1

Rt
⊥
− pt

⊥Ψ

RA
⊥Ψ

)2

σ2
n +

(
τnt

RA
⊥⊥

)2

+

(
τn1

R⊥‖

)2

+
pt
⊥Ψ

RA
⊥Ψ

σn for σn ≥ 0 (4.25)

fE(θ) =

√(
τnt

RA
⊥⊥

)2

+

(
τn1

R⊥‖

)2

+

(
pc
⊥Ψ

RA
⊥Ψ

σn

)2

+
pc
⊥Ψ

RA
⊥Ψ

σn for σn < 0 . (4.26)

with:

pt
⊥Ψ

RA
⊥Ψ

=
pt
⊥⊥

RA
⊥Ψ

cos2 Ψ+
pt
⊥‖

R⊥‖
sin2 Ψ (4.27)

pc
⊥Ψ

RA
⊥Ψ

=
pc
⊥⊥

RA
⊥Ψ

cos2 Ψ+
pc
⊥‖

R⊥‖
sin2 Ψ (4.28)

Ψ = arctan
τn1

τnt

, cos2 Ψ = 1− sin2 Ψ =
τ 2
nt

τ 2
nt + τ 2

n1

(4.29)

RA
⊥⊥ =

Rc
⊥

2(1 + pc
⊥⊥)

(4.30)

Since the stress exposure factor is dependent on the action-plane angle θ = ∠(x2, xn), it
has to be varied from −90◦ to +90◦ in order to find the maximum value of fE. The angle
associated to maximum fE is called θfp. When the maximum fE = 1, it is assumed that
a fracture plane is formed under the angle θfp.

The shear stress τnΨ is introduced to allow for longitudinal sections with Ψ = const.,
making a simpler formulation of the contour lines of the master fracture body possible,
compared to using cross-sections with σn = const. (Cuntze, 1997). The so-called master
fracture body is a visualization of all stress states that yield fE = 1, its sections are
illustrated in fig. 4.15.

The slope parameters p determine the inclination of the master fracture body at the shear
axis. Recommended values are given by VDI (2006), see table 4.2, because they are not
considered to be determined for each lamina.
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Figure 4.15: Master fracture body and its sections (VDI, 2006):
a) Stresses acting on the fracture plane
b) Master fracture body
c) Cross-section (σn = 0)
d) - f) Longitudinal sections (τnt = 0 and τn1 = 0).

pc
⊥‖ pt

⊥‖ pt
⊥⊥ = pc

⊥⊥

GFRP 0, 25 0, 30 0, 20 bis 0, 25

CFRP 0, 30 0, 35 0, 25 bis 0, 30

Table 4.2: Slope parameters for criterion of Puck, as recommended by VDI (2006)

The fracture angle θfp can be identified analytically in case of a plane stress state (σ1, σ2, τ12)
by

θfp =

√
RA
⊥⊥
−σ2

, (4.31)

where the slope parameters pc
⊥‖ and pc

⊥⊥ are coupled by

pc
⊥⊥ = pc

⊥‖
RA
⊥⊥

R⊥‖
. (4.32)

This drastically decreases computational effort. Puck, Kopp, and Knops (2002) state
that this is a valid assumption for 95% of all FRP components, because FRP are usually
employed in thin-walled structures. However, regions of three-dimensional stress states,
e.g. connections between FRP components, seem to be most critical in the author’s view.
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Allocation of fracture modes and fracture angles

Puck (1996) discriminates three different failure modes, as described in section 2.3.2, that
are judged to be differently critical. The allocation of these modes is very simple in the
case of plane stress. It is accomplished over the normal stress σn and the fracture angle
θfp. Fracture mode A is indicated by σn ≥ 0, whereas σn < 0 indicates either mode B
or C. For discrimination between modes B and C the fracture angle θfp is used. Mode C
fracture is indicated by θfp > 0. It is considered to be critical, because it may lead to a
wedge-shaped failure of the lamina that results in stability failure of the whole laminate.

Basically, in a three-dimensional stress state the shear stress τ⊥⊥ is added to the stresses
of the action plane. A fourth mode A* is introduced by Puck for a combination of a
tensile normal stress σn ≥ 0, τ⊥‖ and τ⊥⊥, whilst mode A contains only σn ≥ 0 and τ⊥‖
stresses.

As described in section 4.2.1.2, the fracture plane angle has to be determined by an
iterative search.

Influence of fibre-parallel stresses on IFF

The stress exposure factor fE, given in eqs. (4.25) and (4.26), does not account for fibre
parallel stresses, although IFF is influenced by these stresses. Puck (1996) has chosen
to reduce the strengths of the fracture plane to incorporate this interaction. The algo-
rithm has changed since then, a simplified method was published in VDI (2006) and by
Schürmann (2007) recently. A weakening factor ηw is introduced that increases the stress
exposure factor

fEw =
fE

ηw

. (4.33)

The weakening factor ηw is given dependent on two parameter s and m by

ηw =
c
(
a
√

c2 (a2 − s2) + 1 + s
)

(ca)2 + 1
, (4.34)

with

c =
fE

fE(FF )
and a =

1− s√
1−m2

. (4.35)

Figure 4.16 illustrates the functionality of the weakening factor and the meaning of the
parameters s and m. It shows the σ1-σ2 failure envelope of a UD-lamina. The parameter
m gives the maximum value of ηw, whereas the starting point of the interaction is given
by the parameter s. For both parameters a value of 0.5 is recommended by VDI (2006),
but these values were not validated yet.
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Figure 4.16: Progressive weakening of IFF resistances due to the influence of high fibre-
parallel stresses σ1. (VDI, 2006)

Softening after Inter Fibre Failure

A laminate is a redundant structure, as discussed earlier in section 2.3.2, i.e. inter-
fibre failure does not lead to a complete failure of a whole lamina. The lamina reaches a
characteristic damage state asymptotically, but parts of it remain intact and carry minimal
loads. In contrast, FF is always accounted for as a complete failure of the lamina.

Puck (1996) proposes a softening of the lamina dependent on the stress exposure factor
of the undamaged lamina. The softening factor

η =
1− ηR

1 + c (fE − 1)ξ
+ ηR (4.36)

is multiplied with selected elastic constants. The reduced elastic constants are then used
to compute the actual stresses in the lamina. Young’s E⊥ and shear modulus G⊥‖ are
reduced by the softening factors ηe and ηg in mode A failure, whereas only the shear
modulus is reduced under failure modes B and C, because the crack is assumed to remain
closed and able to transmit normal stresses over contact under compressive fracture plane
stress σn. Knops (2003) has shown by experiment that the softening of Poisson’s ratio
ν⊥‖ in failure mode A, as described by (Puck, 1996) and (Puck & Schürmann, 2004)
is not reasonable. The parameters of the softening function as recommended by Knops
(2003) are given in table 4.3 for GFRP and CFRP. Figure 4.17 illustrates the softening
factor dependent on the stress-exposure factor fE and the asymptotical values of the
characteristic damage state. The shear modulus is degraded less than Young’s modulus,
because the in-situ effect is stronger for this load.

It has to be noted that the softening formulation of Puck is is dependent on stresses and
strains, respectively. As described in section 4.1.1 stress-strain relations for the description
of softening lead to a mesh-dependency, that will be shown in the following section.

Tension Rod Softening

The functionality of Puck’s softening formulation will be demonstrated on the example of
a tension rod. Since the softening algorithm is used for IFF only, the material is loaded
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ηr c ξ

GFRP E⊥ 0, 03 5, 34 1, 31

G⊥‖ 0, 25 0, 70 1, 53

CFRP E⊥ 0, 03 5, 34 1, 31

G⊥‖ 0, 67 0, 95 1, 17

Table 4.3: Softening parameter for Puck’s criterion recommended by Knops (2003)
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depending on the effort fE ≥ 1. Values were taken from table 4.3 for GFRP
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in transverse direction. The dimensions of the rod are 2 x 1 x 1 mm, it is discretized with
2 x 1 x 1, 4 x 2 x 2 and 8 x 4 x 4 volume elements, respectively, it is loaded displacement-
driven in x-direction (2-direction of the material). Figure 4.18 gives the load-displacement
curves of the tension rod dependent on the discretizations.
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Figure 4.18: Load-displacement curves of tension rod

The post-failure behaviour of Puck’s softening formulation is made for laminates of FRP,
that never fail completely, but reach a characteristic damage state due to the in-situ
effect and retain a certain percentage of the initial stiffness, see section 2.3.2. In FRP
IFF does not localize from a macroscopic view, only on the mesoscale numerous cracks
localize in the lamina. Therefore, a fracture energy regularization, that assumes the
aggregation of failure in one macrocrack, is not reasonable, as described in section 4.1, In
contrast, a regularization is not required, because all elements fail consecutively, as the
load-displacement curve in Figure 4.18 shows. However, the energy consumed by damage,
which is the area under the load-displacement curve, is mesh-dependent in this example.
This can be considered only a minor weakness, because the final damage state is mesh-
independent. For lamina that do not adopt the characteristic damage state this softening
formulation should not be used, because it yields wrong results
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4.2.1.3 Simple Parabolic Criterion (SPC)

The simple parabolic criterion (SPC) by Jeltsch-Fricker (1996) is a simplification and
a numerical stabilization of Puck’s IFF condition. The stress exposure factors fE for
inter-fibre failure read

fE =

√
(1− pt)2

(
σn

Rt
⊥

)2

+

(
τnt

RA
⊥⊥

)2

+

(
τn1

R⊥‖

)2

+ pt σn

Rt
⊥

for σn ≥ 0 (4.37)

fE =

√
(pc)2

(
σn

Rc
⊥

)2

+

(
τnt

RA
⊥⊥

)2

+

(
τn1

R⊥‖

)2

+ pc σn

Rc
⊥

for σn < 0 . (4.38)

IFF is detected for fE = 1. The slope parameters are coupled by the equation

pt,c
⊥‖

R⊥‖
=

pt,c
⊥⊥

RA
⊥⊥

, (4.39)

which is a restriction compared to Puck’s criterion that uses four uncoupled parameters.
Boundaries for the parameters pt, pc are

0 < pt < 1 , 0 <
pc

Rc
⊥
≤ pt

Rt
⊥

. (4.40)

Recommended values are pt = 0.3, pc = 0.25.

A softening formulation was not provided by Jeltsch-Fricker (1996), but due to the sim-
ilarity of the whole criterion to Puck’s criterion it is reasonable to use Puck’s softening
approach. The recommended input parameters can be taken as well. However, it has
been stated before that this softening model is not regularized and thus exhibits a mesh
dependency.
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4.2.2 New Invariant-based Quadratic Failure Criterion (IQC) and

Softening Formulation

4.2.2.1 Fibre Failure Condition

It is assumed, that the strength in fibre direction is mainly governed by the strength of
the fibres and that the fibres are only subject to stresses in fibre direction. Therefore the
fibre failure condition is relatively simple:

aσa

R‖
= 1 (4.41)

The fibre tensile strength Rt
‖ and a compressive strength Rc

‖, representing the resistance of
the UD-Composite under uniaxial tension and compression in fibre direction, are needed
as input data. If one of these strengths is achieved, the material fails and there is no
remaining load carrying capacity. The term aσa is the projection of the stress tensor
onto the preferred direction and R‖ is the resistance of the fibre bundle in fibre direction
in tension (R‖ = Rt

‖) and in compression (R‖ = Rc
‖) respectively.

4.2.2.2 Inter-Fibre Failure Condition

Inter-fibre failure is formulated in the format of the yield locus in section 3.2, based on
the invariants presented there. The failure surface is:

r = β1 I1 + β2 I2 + β3I3 + β32I
2
3 − 1 (4.42)

The failure criterion is active, when r = 0. The parameters β1, β3 and β32 are obtained in
the same manner as the parameters α1, α3 and α32 for the yield function eq.3.30. There-
fore, the material strengths of uniaxial tension Rt

⊥ and compression Rc
⊥ perpendicular to

the fibre and the material strength of transverse shear R⊥⊥ and in-plane shear R‖⊥ have
to be inserted instead of the yield stresses in eq.3.30. If not available from experimental
tests the required strengths Rt

⊥, Rc
⊥, R⊥⊥ and R‖⊥ can be obtained from simulations with

the micromechanical unit cell, see section 6. If the inter-fibre failure condition is reached,
the current stress state is saved as effective stress, i.e. hardening modulus is set to zero
and ideally plastic behaviour is assumed. Stiffness degradation is then initiated and con-
trolled by a scalar damage variable d, as already described in sec. 4.1.1 for the isotropic
model. Here, the damage variable d does not affect the stresses in fibre direction σ11.

Figure 4.19 shows yield and fracture surface in the
√

I1-I3-invariant-plane, where I3 can be
seen as hydrostatic pressure and

√
I1 as deviatoric stresses. Please note that the horizontal

axis describes biaxial stress states, because the stresses in fibre direction are not included
in invariant I3. Initially the yield surface is smaller than the yield surface for all stress
states, but in the hardening process it widens until it meets the failure condition in the
given stress state. It is important to note that hardening can still progress, if the yield
surface meets the failure surface somewhere else, but not in the current stress state. This
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fact enables a differently pronounced plasticity for different stress states, e.g. tension and
shear, as it is encountered in UD-composites.

initial yield surface

failure surface

I

uniaxial
compression

biaxial
compression

uniaxial
tension

biaxial
tension

transverse shear

Figure 4.19: Yield and failure surface of the transversely isotropic material model in
√

I1-
I3-invariant-plane

An example for the shape of the IQC-failure surface is given in Figure 4.20 in σ2-σ3-
τ23-space.

4.2.2.3 Softening Formulation

If the failure criterion is fulfilled, a softening formulation equal to the formulation for
the epoxy resin, given in section 4.1.1 is applied. However, it has to be accounted for
the transverse isotropy of the material. Thus, two different damage variables are used
for FF and IFF. If the IQC detects IFF, the plasticity algorithm changes from plastic
hardening to ideally plastic behaviour, and an isotropic damage variable is multiplied
with the effective plastic stress to give the nominal stresses. The evolution of the damage
variable is governed by the fracture energy regularization technique, i.e. dependent on
strain energy release rate and equivalent plastic displacement since damage initiation. All
elastic constants, apart from the stiffness in fibre direction are damaged in the same way.
Therefore, only fibre stresses remain in the element. If FF is detected, the fibre direction
stresses are degraded with a formulation analogous to Hillerborg’s softening, but without
the need of plasticity. This softening formulation is used only for regularization purposes,
therefore the applied strain energy release rate does not have a physical basis, but is
chosen such that it has a minimal effect. The damage variable df is calculated from the
displacement at damage initiation

ut,c
fail = Le

Rt,c
‖

E‖
(4.43)

and the displacement at ultimate failure
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Figure 4.20: Failure surface of IQC in stress space

ut,c
ult = 2 ∗ GIc

Rt,c
‖

+ ut,c
fail (4.44)

and the actual displacement u over

df =
u− ufail

uult − ufail

. (4.45)

The nominal stresses are than calculated by multiplication of the fibre direction stresses
with the damage variable df .

The softening formulation does not take the in-situ-effect of lamina embedded in laminates
into account, because it is to be applied in mesomechanical unit cell simulations that model
this effect discretely rather than in a smeared way.
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4.2.3 Comparison of Failure Criteria

For UD-composites several benchmarks were published in the World-Wide Failure Exer-
cise, that are used to show the capabilities of the presented failure criteria and softening
formulations. Firstly, table 4.4 gives a comparison of the input parameters required by
the failure criteria Puck, SPC and IQC. It can be seen, that the criterion of Puck re-
quires the most parameters, especially a number of slope parameters, which are not easily
determined experimentally. Mostly they can be associated to a physical effect, like e.g.
internal friction, but they don’t have a concrete physical meaning like e.g. strengths.
Puck gives reference values for these slope parameters, because they are not supposed to
be determined for each laminate. In table 4.4 the reference values are given to clarify
which parameters are usually not determined for the actual material. Reference values
are given for GFRP.

Table 4.4: Input parameters of failure criteria (for GFRP)

Parameter Puck SPC IQC

Strengths Rt,c
⊥ Rt,c

⊥ Rt,c
⊥

Rt,c
‖ Rt,c

‖ Rt,c
‖

R⊥‖ R⊥‖ R⊥‖

R⊥⊥

Slope pt
⊥‖ = 0.3 pt = 0.3

Parameters pc
⊥‖ = 0.25 pc = 0.25

pt
⊥⊥ = 0.2

pc
⊥⊥ = pt

⊥⊥

Magnification mσf = 1.3 - -

factor

Fibre-parallel s = m = 0.5 - -

Weakening 0, 5 ≤ ηw ≤ 1

Softening ηr,E⊥ = 0.03 - GIc

cE⊥ = 5.34

ξE⊥ = 1.31

ηr,G⊥‖ = 0.25

cG⊥‖ = 0.7

ξG⊥‖ = 1.53

In contrast to Puck’s criterion and the SPC, for the presented inter-fibre failure condition
in eq. 4.42 a strength R⊥⊥ is required, that is hardly determinable experimentally. Thus,
either a micromechanical unit cell can be used for determination or an approximation
given by Puck (1996)
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R⊥⊥ =
Rt
⊥√
2

. (4.46)

The different number of parameters for degradation is mainly caused by the fact that
Puck’s model incorporates the in-situ-effect and the IQC-model does not. To account
for this effect multiple cracks have to be smeared over one element which increases the
complexity drastically. Because of this smearing procedure, Puck’s degradation is a phe-
nomenological approach. In contrast, the degradation model of the IQC is physically
motivated and regularized, but does not account for the in-situ-effect.

4.2.3.1 Laminate Models and Load Cases from the WWFE

In the WWFE five different laminate configurations and single UD-layers have been used.
The laminates and their dimensions are shown in Figure 4.21.

Figure 4.21: Implemented laminates from the WWFE (Hinton et al., 2004).
(90°/±30°)s, total thickness: 2.0 mm, h1 = 0.172 mm and h2 = 0.414 mm.
(0°/±45°/90°)s, total thickness: 1.1 mm, h = 0.1375 mm
(±55°)s, total thickness: 1.0 mm, h = 0.25 mm
(0°/90°)s, total thickness: 1.04 mm, b = 0.52 mm, a = 0.26 mm
(±45°)s, total thickness: 1.00 mm, h = 0.25 mm

Those laminates are made of four different materials:
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GFRP-1 E-glass fibres and epoxy resin LY556/HT907/DY063,

GFRP-2 E-glass fibres and epoxy resin MY750/HY917/DY063,

CFRP-1 Carbon fibres AS4 and epoxy resin 3501-6,

CFRP-2 Carbon fibres T300 and epoxy resin BSL914C.

The material data are given in table 4.5. Table 4.6 shows which laminate was made of
which material. Altogether 14 load cases are given with different requirements and result
types. For some load cases the result is provided as a non-linear stress-strain curve, for
others biaxial test data is provided that should be compared with a failure envelope.

The boundary conditions applied on the lamina and laminates are given in Figure 4.22(b).
It is assumed that the load is applied on an infinite shell, thus no free-edge effects or inter-
laminar shear stresses have to be considered. Each lamina is represented by one element
and the elements are stacked in z-direction. The faces of the elements are restricted to
remain parallel to their reference configuration, but they can deform freely, if no load is
applied. Thus, in the given load case in Figure 4.22(b) under σx- and σy-tensile load the
laminate contracts freely in thickness direction.

Table 4.5: Material properties of UD laminae used for the implementation (Hinton et al.,
2004)

CFRP-1 CFRP-2 GFRP-1 GFRP-2

Fibre type AS4 T300 E-glass E-glass

Matrix type 3501-6 BSL914C LY556 MY750

Fibre volume fraction, vf in % 60 60 62 60

Longitudinal modulus E‖ in GPa 126 138 53.48 45.6

Transverse modulus E⊥ in GPa 11 11 17.7 16.2

In-plane shear modulus G⊥‖ in GPa 6.6 5.5 5.83 5.83

Major Poisson’s ratio ν⊥‖ 0.28 0.28 0.278 0.278

Through thickness Poisson’s ratio ν⊥⊥ 0.4 0.4 0.4 0.4

Longitudinal tensile strength Rt
‖ in MPa 1950 1500 1140 1280

Longitudinal compr. strength Rc
‖ in MPa 1480 900 570 800

Transverse tensile strength Rt
⊥ in MPa 48 27 35 40

Transverse compr. strength Rc
⊥ in MPa 200 200 114 145

In-plane shear strength R⊥‖ in MPa 79 80 72 73

Fibre: Longitudinal modulus E‖f in GPa 225 230 80 74

Fibre: Major Poisson’s ratio ν⊥⊥f 0.2 0.2 0.2 0.2

Fibre: Long. tensile failure strain εt
‖f 1.488 1.086 2.687 2.905
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(a) Finite element mesh of
(0°/±45°/90°)s-laminate

s
x

s
y

(b) Boundary conditions applied
on lamina and laminates

Figure 4.22: Finite element discretization of WWFE tests
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4.2.3.2 UD-Layer

Load Case 1: σ2-τ12-envelope
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Input strengths (Krauss/Schelling)
WWFE Biaxial test results (Huetter)
Analytical Puck
Analytical IQC
VUMAT Puck
VUMAT IQC

Figure 4.23: Load case 1: σ2-τ12-failure envelope for GFRP-1 UD-Layer

Figure 4.23 shows failure envelopes of Puck and IQC for IFF in the σ2-τ12-plane compared
with test data. Firstly, it is apparent that the difference between the experimental results
for input by Kraus/Schelling and for validation by Hütter is relatively large, especially
under compression. Therefore, the simulation results are too conservative, but the shape
is predicted well by both models. Overall, the differences between the criteria are very
small, compared to the variance of the test data.



4.2. Failure and Softening Formulations for UD-Composites 73

Load Case 2: σ1-τ12-envelope
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Figure 4.24: Load case 2: σ1-τ12-failure envelope for CFRP-2 UD-Layer

Failure envelopes of Puck and IQC for FF and IFF in the σ1-τ12-plane compared with
test data are shown in Figure 4.24. Once again it is quite hard to interpret the test data,
because of its wide variance. Especially under shear it is not clear why the test deliver
such high values compared to the given in-plane shear strength of R12 = 80MPa. But it
is also well known, that shear strengths are difficult to determine. Although the shapes of
the two criteria are rather different it is not clear which predicts failure better. The IQC
assumes that fibre-parallel stresses do not contribute to inter-fibre failure, in analogy to
the formulation of the plastic yielding. Therefore, it resembles a maximum stress criterion
in this load case, that works very well under tension. However, Puck’s criterion predicts
strength under compression better.
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Load Case 3: σ1-σ2-envelope
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Figure 4.25: Load case 3: σ1-σ2-failure envelope for GFRP-2 UD-Layer

Figure 4.25 shows failure envelopes of Puck and IQC for FF and IFF in the σ1-σ2-plane
compared with test data. In this load case the criterion of Puck shows an advantage
over the IQC, because it predicts the influence of fibre-parallel stresses better, see sec-
tion 4.2.1.2. However, the strengths are still overestimated by Puck’s criterion in mixed
tension/compression load cases. It should be considered to consider the fibre-parallel
stresses in the IFF-condition of the IQC, for instance over an additional invariant I4 that
incorporates these stresses as well.
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4.2.3.3 (90°/±30°)s-Laminate

Load Case 4: σx-σy-envelope
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Figure 4.26: Load case 4: σx-σy-failure envelope for GFRP-1 (90°/±30°)s-Laminate

Failure envelopes of Puck and IQC for FF and IFF in the σx-σy-plane compared with
test data are shown in Figure 4.26. The IFF curves depict the predicted first-ply failure,
which was not determined in the tests. Both criteria show very little differences for IFF,
but overestimate the compressive strengths of the laminate. Concerning the compressive
failure it is stated in the WWFE by Hinton et al. (2004) that it was controlled whether
buckling occurred during the tests. Buckling was neither considered in the simulation
therefore it is probable that this overestimation can be attributed to buckling. In all
other load cases the difference between the criteria is rather small and both can be judged
equally good.
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Load Case 5: σy-τxy-envelope

 0

 400

 800

-800 -400  0  400  800

τ x
y 

in
 M

P
a

σy  in MPa

Puck FF
IQC FF
Puck IFF
IQC IFF
Test results WWFE

Figure 4.27: Load case 5: σy-τxy-failure envelope for GFRP-1 (90°/±30°)s-Laminate

Figure 4.27 shows failure envelopes of Puck and IQC for FF and IFF in the σy-τxy-plane
compared with test data. The differences between the criteria in the detection of FPF,
depicted here by IFF, are once again negligible, but unfortunately no test data exist
for a validation. In final failure the IQC is more conservative than Puck’c criterion,
probably because the softening formulation does not take the in-situ effect into account,
but degrades the stiffnesses relatively fast to zero. Especially for shear this has a great
effect, because in Puck’s degradation model about 20% of the initial shear stiffness remain.
Overall, strengths are overestimated by Puck’s criterion, but the IQC also overestimates
strengths under shear. Hinton et al. (2004) state that an undocumented shear buckling
might have taken place in the tests.
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4.2.3.4 (0°/±45°/90°)s-Laminate

Load Case 6: σy-σx-envelope
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Figure 4.28: Load case 6: σy-σx-failure envelope for CFRP-1 (0°/±45°/90°)s-Laminate

Failure envelopes of Puck and IQC for FF in the σy-σx-plane compared with test data
are shown in Figure 4.28. In this load case the differences between Puck’s criterion and
the IQC are negligible. Once again, buckling in the tests might be an explanation of the
overestimation of the compressive strengths of both models, see Hinton et al. (2004).
Under mixed tension/compression the IQC reproduces the tendency of the test results
slightly better.
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Load Case 7: εy
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Figure 4.29: Load case 7: σy-εx,y-curve for CFRP-1 (0°/±45°/90°)s-Laminate

Figure 4.29 shows stress-strain curves of Puck and IQC for a displacement-driven tensile
load in εy direction compared with test data. At first glance, Puck’s prediction is better
than the prediction with the IQC, the difference to the test data is negligible. The IQC
predicts the initial curve very well until an in-plane shear failure in the 45°-layers at 450-
500 MPa that leads to a deviation. Interestingly Hinton et al. (2004) report a possible
matrix failure at about 400 MPa which coincides perfectly with the prediction of the
IQC. Due to the in-situ effect this matrix failure is not so apparent in the sress-strain
curve, because the degradation spreads only slowly throughout the whole specimen The
softening formulation does not consider the in-situ effect and thus predicts a relatively
sudden failure. Therefore, the simulation deviates from the test.
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Load Case 8: σy/σx = 2/1
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Figure 4.30: Load case 8: σy-εx,y-curve for CFRP-1 (0°/±45°/90°)s-Laminate

Stress-strain curves of Puck and IQC for a force-driven biaxial σy/σx = 2/1 load compared
with test data are shown in Figure 4.30. The prediction of Puck’s criterion is missing in
this diagram, because of numerical problems. Test data and simulation fit very well
togehter, especially the IFF at around 400 MPa is very well predicted by the simulation.
However, the effect of IFF is slightly overestimated by the softening formulation of the
IQC.
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4.2.3.5 (±55°)s-Laminate

Load Case 9: σy-σx-envelope
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Figure 4.31: Load case 9: σy-σx-failure envelope for GFRP-2 (±55°)s-Laminate

Figure 4.31 shows failure envelopes of Puck and IQC for IFF in the σy-σx-plane compared
with test data. This load case is not predicted very well by either of the failure criteria.
The prediction of first-ply IFF is nearly identical and in good correspondence with the test
results. However, the laminate lay-up leads to a simultaneous IFF of all layers and thus
makes it complicated to judge upon the fatality of this failure. Puck and Schürmann (2004)
introduce additional conditions, such as a maximum shear deformation of γ=20 % to
jugde upon failure of the whole laminate. However, even with these additional conditions,
a satisfying prediction could not be reproduced. Therefore, the prediction of final failure
in this load case remains unresolved.



4.2. Failure and Softening Formulations for UD-Composites 81

Load Case 10: εy

 0

 200

 400

 600

 800

-12 -9 -6 -3  0  3  6  9

σ y
 in

 M
P

a

ε in %

IQC nlin εx
IQC nlin εy
IQC lin  εx

IQC lin  εy
Puck (lin.) εx
Puck (lin.) εy

WWFE Daten ε1
WWFE Daten ε2

Figure 4.32: Load case 10: σy-εx,y-curves for GFRP-2 (±55°)s-Laminate

Stress-strain curves of Puck and IQC for a displacement-driven tensile load in εy direction
compared with test data are shown in Figure 4.32. In this load case the lamina are
mainly loaded with shear stresses. Therefore, the application of a non-linear material
behaviour, described in section 3.2, in the IQC yields much better results than with linear
material. Once again the IQC degradation does not take into account the in-situ effect
and thus estimates too conservative strengths. Although Puck’s criterion predicts too
high strengths the degradation model obviously catches the softening much better.
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Load Case 11: σy/σx = 2/1
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Figure 4.33: Load case 11: σy-εx,y-curves for GFRP-2 (±55°)s-Laminate

Figure 4.33 shows stress-strain curves of the IQC for a force-driven biaxial σy/σx = 2/1
load compared with test data. Predictions of Puck’s criterion are not given here, because
this load case requires non-linear material behaviour, which was not implemented. The
stress-strain curves are predicted very well with the presented material model, also in the
nonlinear regions. Failure is predicted early, however it is in good correspondence with
the test results nonetheless, because a weeping of unlined tubes was reported at the same
stress level, see Hinton et al. (2004). The weeping is caused by IFF, which is as well
predicted by the IQC. Due to the applied softening formulation IFF leads to complete
failure of the laminate, because the material is degraded up to zero stiffness.
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4.2.3.6 (0°/90°)s-Laminate

Load Case 12: εy
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Figure 4.34: Load case 12: σy-εx,y-curves for GFRP-2 (0°/90°)s-Laminate

Stress-strain curves of Puck and IQC for a displacement-driven tensile load in εy direction
compared with test data are shown in Figure 4.34. This load case is predicted very well
by both simulations.
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4.2.3.7 (±45°)s-Laminate

Load Case 13: σy/σx = 1/1
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Figure 4.35: Load case 13: σy-εx,y-curves for GFRP-2 (±45°)s-Laminate

Figure 4.35 shows stress-strain curves of Puck and IQC for a force-driven biaxial σy/σx =
1/1 load compared with test data. Both simulations overestimate the strength of the
laminate in this load case. The nonlinearity of the test results is not described by the
models. Nevertheless, the prediction of the first damage at around 70 MPa is predicted
very well by both models.
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Load Case 14: σy/σx = 1/− 1
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Figure 4.36: Load case 14: σy-εx,y-curves for GFRP-2 (±45°)s-Laminate

Stress-strain curves of Puck and IQC for a force-driven biaxial σy/σx = 1/ − 1 load
compared with test data are shown in Figure 4.36. The nonlinear behaviour prior to
failure is characteristic for this load case. Therefore, the linear material used together
with Puck’s criterion model does not perform very well. Both failure criteria predict an
IFF at σy

∼= 70 MPa correctly, but the predictions for the deformations are very different.
The softening formulation of Puck does not yield reasonable results for this load case,
probably due to the fact that all laminas fail simultaneously, which means that the in-situ
effect does not occur. This result shows that the incorporation of the in-situ effect in
the softening formulation can be misleading and requires a thorough checking on each
application.

In combination with the nonlinear material model presented in section 3.2, the nonlinearity
of the stress-strain curve can be simulated very well with the IQC. A nonlinear material
model was not implemented for Puck’s criterion, therefore it cannot be judged which
criterion works better with a nonlinear material model. However, it is evident that a
nonlinear material model is needed for a realistic failure prediction.

4.2.3.8 Conclusion

Overall, the failure criteria are equally suited for failure prediction of FRP-laminates.
Especially IFF is mostly detected at the same stress levels. In the load cases 4, 5 and 6
the strengths are partly overestimated in the compression or shear regime, but this can
probably be explained by buckling in the tests.
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The main differences between the numerical results can be attributed to the material and
degradation models. As a matter of fact, the Puck degradation model works little bit
better for laminates, because it accounts for the in-situ effect. If the strength of laminates
should be evaluated with the presented degradation model, an adapted degradation model
that considers the in-situ effect would be necessary. However, load case 14 shows that
an incorporation of the in-situ effect can also overestimate strength, if failure in adjacent
lamina takes place simultaneously. The presented softening approach with zero remaining
stiffness predicts conservative results, but does not lead to such overestimations. For
computations on the mesoscale the in-situ effect should be neglected anyway and the
regularization of the softening behaviour is of most importance. Therefore, the presented
degradation model is better suited for such simulations.

The load cases 7, 13 and 14 have also been computed with the SPC in combination with
Puck’s degradation model and were found to give identical results. Considering the fact
that the SPC is the simpler approach, it seems to be the better choice, because the results
are equal.
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4.3 Failure Criterion for Textile Composites

One textile layer incorporates at least two different fibre directions, because it consists of
an impregnated textile fabric. Mostly, these different fibre directions are also arranged in
distinguishable layers inside the textile layer that are connected through a textile tech-
nique. Therefore, failure criteria for textile composites can be formulated in two different
ways.

Firstly, the failure criterion can be formulated for the whole textile layer. The advan-
tage of this method is, that the required strengths can be determined experimentally.
However, numerous tests may have to be carried out, because a textile layer exhibits
orthotropic, or even anisotropic behaviour. Furthermore, the determination of through-
thickness strengths is problematic, because only specimens with the thickness of the tex-
tile layer can be produced, that are usually to thin for through-thickness testing, see
section 2.4.2. The disadvantage of this method is, that the failure mechanisms cannot be
described very well, because the experimental detection of inter-fibre failure is not possi-
ble, see section 7.3. The previous chapter, however, showed clearly that especially a good
description of the failure mechanisms is required for a good estimation of the strengths in
simulation.

Secondly, the failure criterion can be formulated for one layer inside a textile layer. Thus,
a textile layer is modelled with multiple laminas, one for each fibre direction. This method
allows for a very detailed description of the failure mechanisms in each lamina. Unfortu-
nately, it is not possible to determine the properties of the laminas experimentally, because
the textile layer cannot be disassembled for testing. This method is used nonetheless, with
properties of the laminas derived from UD-layers. Although each lamina has orthotropic
material behaviour, due to the through-thickness reinforcements, failure criteria for UD-
composites are then used for failure prediction. For thin laminates in thin-walled struc-
tures, this simplification is probably not very restrictive. However, the positive influence
of the through-thickness reinforcements is neglected by this method and a criterion for an
orthotropic lamina is favorable.

4.3.1 Failure Criterion of Juhasz

Juhasz et al. (2001) have proposed a criterion for an orthotropic lamina in a textile
layer. It is based on the SPC, see section 4.2.1.3, the only difference are the strengths of
the action plane. Juhasz et al. (2001) generalize the concept of the action plane in so
far that the action plane may be crossed by the through-thickness reinforcements, under
the preposition that the through-thickness reinforcements are much weaker than the in-
plane reinforcements. In fact, they consider the action plane only as the plane of damage
initiation, but not necessarily as the plane of damage evolution.

Fibre failure is evaluated with the conditions of Puck, given in eq. 4.25 and eq. 4.26.
The algorithm for the IFF condition is the same as in Puck’s criterion and in the SPC.
Through a variation of the action-plane angle θ, see Figure 4.37, the plane of maximum
effort is determined. In contrast to the SPC the action-plane strengths are not constant
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Figure 4.37: Definition of action-plane angle θ

in the criterion of Juhasz et al. (2001), but dependent on the action plane angle θ to
account for the influence of the through-thickness reinforcements:
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After transformation of the lamina stresses on the action plane in analogy to eq. 4.24 the
IFF action-plane criterion of Juhasz et al. (2001) reads
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for σn < 0 in analogy to the SPC. Table 4.7 summarizes the parameters required by the
criterion of Juhasz et al. (2001).

It is important that Juhasz (2003) discriminates between strengths R
(t,c)
i and strength

parameters R̃
(t,c)
i of the IFF criterion. The strength parameters R̃2, R̃3, R̃12, R̃13 and R̃23

as well as the slope parameters are determined with a fitting procedure from off-axis tests
in the 1-2- and 1-3-plane from the strengths R2, R3, R12, R13 and R23. For a reduction of
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Table 4.7: Strengths and strength parameters of Juhasz’s criterium

Strengths Rσ, Rτ Strength parameters R̃σ, R̃τ Slope parameters p

of orthotropic layer of Juhasz-criterion

tension compression shear tension compression shear tension compression

Rt
1 Rc

1 R12 - - R̃t,c
12 pt pc

Rt
2 Rc

2 R13 R̃t
2 R̃c

2 R̃t,c
13

Rt
3 Rc

3 R23 R̃t
3 R̃c

3 R̃t,c
23

the experimental effort mesomechanical unit cells are presented in chapter 7, that allow
for a numerical determination of these parameters.

The criterion of Juhasz et al. (2001) is made for a lamina inside a textile layer that has a
weaker through-thickness than in-plane reinforcement. The boundaries of its applications
are not yet determined, but a non-crimp fabric is certainly a textile composite that fits
this definition. However, for a very weak through-thickness reinforcement it is probably
also possible to use criteria for UD-composites without much loss of accuracy.

Juhasz (2003) does not propose a softening formulation for the simulation of progressive
failure. Due to the common basis of this criterion and Puck’s criterion it is possible to
use Puck’s softening model. The softening formulation has to be extended to orthotropic
layers.

4.3.2 Off-Axis Tests for Criterion of Juhasz

The criterion of Juhasz requires a parameter-fitting procedure with off-axis tests, which
include tests in through- thickness direction. Coupon specimens for such a test have to in-
corporate through-thickness reinforcements over the whole length of the specimen. Juhasz
(2003) has therefore proposed coupon specimens that correspond to such a through-
thickness reinforced lamina.

For in-plane off-axis tests 2 mm thick laminates solely of 0°-layers are used. Coupon
specimens are cut out under different angles α, see left hand side of Figure 4.38. The
through-thickness reinforcements are neglected in these tests.

For out-of-plane (1-3-plane) off-axis tests 2 mm thick [0°[0°/90°]20°]S]-laminates are used.
The 90°orientation represents the through-thickness reinforcements. Coupon specimens
are cut out under different angles α corresponding to the 0°-direction, see right hand side
of Figure 4.38.

Figure 4.39 shows the experimentally determined strengths normalized with the tensile
and compressive strengths, dependent on the off-axis angle α. Results for in-plane off-
axis tests are given in Figure 4.39(a), for out-of-plane off-axis tests in Figure 4.39(b).
A comparison of both curves shows the influence of the through-thickness reinforcement
under an angle of α = 90°.
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Figure 4.38: Off-axis-tests source: (Juhasz, 2003)

The subsequent parameter fitting procedure is given in Juhasz (2003) in detail.

4.3.3 Discussion of Juhasz-Criterion

Naturally, it is required to make assumptions in the formulation of a failure criterion.
Some assumptions of Juhasz appear to be questionable and thus shall be discussed in
this section. Juhasz assumes different shear strengths under tension and compression
Rz

nt 6= Rd
nt to make his FF and IFF conditions meet the same strength for an in-plane

off-axis-load at alpha = 2°. This assumption leads to discontinuities in the failure surface
that are physically not reasonable. Furthermore, these discontinuities are problematic
in numerical simulations, where the numerical precision can easily lead to changes of σn

from positive to negative values and back between time steps. To the author it seems
questionable, that the transition between FF and IFF has to take place at an angle
alpha = 2°for tension and compression, because prove for such behaviour could not be
found in literature. A different transition angle between FF and IFF under tension and
compression seems physically more senseful than different shear strengths under tension
and compression.

The criterion of Juhasz is made especially for weak through-thickness reinforcements, i.e.
for an orthotropic layer with R

(z,d)
2 ≈ R

(z,d)
3 . It is based on the SPC, see section 4.2.1.3, but



4.3. Failure Criterion for Textile Composites 91

(a) 1-2-plane (b) 1-3-plane

Figure 4.39: Normalized strength dependent on off-axis angle α (source: DLR/FA)

the SPC is not comprised in Juhasz’ criterion for the special case of transversely isotropic
material behaviour. If transversely isotropic strengths R
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R13 = R‖⊥ are input in Eq. 4.47, the strengths of the action plane
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Rn1 = R‖⊥|sinθ|+ R‖⊥|cosθ| 6= R‖⊥

are not the same as in the SPC. The eqns 4.49 are illustrated in Figure 4.40, that shows
the dependence of the action-plane strength parameters on the action plane angle θ for the
transversely isotropic case. In contrast to the SPC, in the criterion of Juhasz the action
plane strengths are not constant, only their minima for θ = 0°and θ = 90°coincide with
the physical value. Therefore, the criterion of Juhasz yields other results than the SPC
for UD-composites and thus is probably not suited well for very weak through-thickness
reinforcements.

Juhasz does not use test specimen with weak through-thickness reinforcements. The pre-
sented off-axis test specimen are rather usual laminates than through-thickness reinforced
layers, in which 25 % of the fibres are oriented in “thickness”-direction. Such a strong
through-thickness reinforcement can surely be found only locally in composite structures.
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Figure 4.40: Action-plane strengths after Juhasz for transversely isotropic material



5 Multiscale Analysis

In this chapter firstly a short introduction into the theory of multiscale analyses and
homogenization is given that includes a description of boundary conditions used for ho-
mogenization in the presented multiscale algorithm. Secondly, a multiscale algorithm for
determination of stiffness and strength of textile composites is presented, see also Rolfes,
Ernst, Vogler, and Hühne (2008).

5.1 Basic Concept of Multiscale Analysis

The main idea of conducting a multiscale simulation is to incorporate effects from lower
levels into a computation of a structure at macroscale, because it is not possible to account
for the heterogeneity of the material on this scale alone. Therefore, the multiscale analysis
has a special importance for virtual testing, because it is able to account for various effects
on different scales at a time.

5.1.1 Need for Different Length Scales

When dealing with atomic structures it becomes very clear that every matter is a structure
and that there is no such thing as a continuum material. Of course, an engineer cannot
simulate the atomic structures of bridges or aeroplanes. Therefore, the atomic structure
is homogenized and regarded as a continuum. A phenomenological material model is
then needed for this continuum, to describe the material behaviour. The parameters of
the material model are determined by experimental tests and the atomic structure is of
no concern. When on the other hand experimental tests shall be replaced or reduced,
it is possible to derive the material properties of the continuum with a homogenization
procedure from the atomic structure. This is called a bottom-up approach. At nanoscale
a Representative Volume Element (RVE) is discretized that should be representative for
the material on macroscale. Unfortunately, most materials have defects, or flaws, that are
very important for the behaviour on macroscale, but that are too big to fit in the nanoscale
RVE. Thus, another RVE has to discretize the structure of the flaws in between nanoscale
and macroscale. Most macroscale materials have quite numerous intrinsic structures at
different scales, that have to be taken into account in a complete bottom-up approach.
Diamonds and metals are relatively perfect, but especially composites have many intrinsic
structures. Therefore, a multi-scale simulation is needed to determine its macroscale
material properties. A multiscale simulation does not necessarily start at nanoscale, if
the material behaviour on a higher scale can be described reliably. Material behaviour

93
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of glass-fibres and epoxy resin is well-known, see chapter 2 and sophisticated material
models, failure criteria and softening formulations are presented in chapters 3 and 4.
Therefore it is only natural to take the microscale, where fibre and matrix are discretized,
as a starting point for a multiscale simulation of textile composites.

Fortunately for the engineer most structures behave predictably linear within certain lim-
its. In the past mostly the limits of linearity were determined and structures were designed
to remain within these limits. Growing knowledge about non-linearities of materials makes
it possible to gain economic profits from building lighter structures that exhibit uncritical
nonlinear behaviour.

5.1.2 Information-passing and Coupled Multiscale Analysis

There are mainly two types of multiscale analysis, coupled multiscale analysis on the one
hand and information-passing multiscale analysis on the other. They have in common
that results from a lower scale are homogenized and used as the material behaviour on
the upper scale. Furthermore, both employ the same RVEs or unit cells.

In the coupled multiscale analysis the computation is carried out simultaneously on all
scales. Each macroscale integration point in a FE-analysis has a lower scale RVE that is
used to simulate the material behaviour in each increment. Main challenge of this method
is to define boundary conditions top-down and bottom-up as well as to make the RVE
on the lower scale as small as possible to save computational time. The advantage of
this coupling is that no material model is needed on macroscale, the RVE only is used to
describe the constitutive behaviour on macroscale. In an FE-simulation the macro-strains
of the Gauss point are applied on the micro-model, and the resulting mean stresses are
taken as the macro-stresses. Thus, no further assumptions or approximations commonly
made in a material model restrain the results of this analysis. The development of an
appropriate material can cost a significant amount of development time, and a great effort
has to be made that the macroscale material model is able to incorporate all effects from
the lower scale. Another advantage of the coupled multiscale analysis is that the mesh on
microscale can easily be adapted to known local imperfections on the macroscale. If, for
instance, a textile fabric is sheared in the draping process, its lay-up may differ significantly
from the initial configuration. In a coupled multiscale analysis at each Gauss point another
micromodel may be applied according to the mesomechanical geometry, see Haasemann,
Kästner, and Ulbricht (2006). The main disadvantage of this method is of course its long
runtime, because of the many RVEs that have to be simulated. Therefore, it is crucial
that the FE-mesh of the RVE is as coarse as possible, which implies that the results are
compromized, if no sophisticated techniques, like e.g. X-FEM, see Kästner, Haasemann,
Brummund, and Ulbricht (2008), are applied. The high computational cost also forbids
the use of monte-carlo simulations of the RVE. For example randomized micromechanical
RVEs with a high number of fibres, as described in section 6.3, could not be simulated in
each increment in a reasonable time. However, increasing computational power will make
this disadvantage disappear in future.

In the information-passing multiscale analysis different scales are computed sequentially.
Usually, the simulation starts on the lowest scale. The homogenized results are then passed
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to the next scale, where they are used as input for a material model. Main challenge of
this method is to define appropriate material models that are able to describe all relevant
effects from the lower scale. The advantage of the information-passing multiscale analysis
is its shorter runtime, especially if numerous computations, for example many load cases,
must be carried out on macroscale. No matter how many simulations are carried out on
macroscale, lower scale simulations have to be carried out only once. Therefore, it is no
problem to use very refined RVEs on microscale and thus to produce better results on
the lower scales. If, for instance, a statistical fibre distribution on microscale should be
evaluated, this does not effect the computational time on macroscale. On the other hand,
consideration of local imperfections on macroscale, e.g. fibre misalignments from draping
as described above, is relatively labor-intensive, because many computations have to be
carried out on the microscale. However, an efficient scripting technique may alleviate
this disadvantage. Another possible drawback is that the material model applied on the
macroscale may contain restrictive assumptions that can easily be overlooked.

5.2 Homogenization

x2

x1

Heterogenous material Homogenous material

x2

x1

Representative Volume Element

L

a

l

Figure 5.1: Homogenization of heterogeneous structure via Representative Volume Ele-
ment (RVE)

Homogenization is used to simplify a heterogeneous material as a homogeneous one, see
Figure 5.1. It bridges the two characteristic length scales of lower scale l and upper
scale L. These length scales are also important for the geometry and dimension of the
RVE that is used to describe the heterogeneity of the material on the lower scale. In a
homogenization from micro- to mesoscale for the lower scale length l is the diameter of a
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fibre on the microscale, for example, whereas the fibre bundle thickness on the mesoscale
is the upper scale length L, see Figure 5.1. The same fibre bundle thickness is the lower
scale length l in a homogenization from meso- to macroscale. Typical upper scales lengths
L on the macroscale are layer thickness, stringer height or stringer spacing of a stiffened
panel. Thus, the length L is dependent on the direction, i.e. in thickness direction it can
be smaller than in in-plane direction.

5.2.1 Representative Volume Element and Unit Cell

The RVE is used to describe a representative part of the material. It should incorporate
all relevant components, e.g. fibre and matrix on the microscale, in a statistically homo-
geneous distribution. The statistical homogeneity requires the dimension of the RVE, a,
to meet the criterion

l � a . (5.1)

If this criterion is fulfilled, the properties of the RVE can be assumed to be representa-
tive for the properties of the material. Unfortunately, an inhomogeneity throughout the
whole RVE violates the requirement of statistical homogeneity. Therefore, this criterion
prohibits the determination of strength and softening, because either of these requires the
localization of a crack, plastic zone, etc. through the whole RVE.

Usually, a uniform load distribution is assumed in the boundary conditions of the RVE,
although an inhomogeneous stress or strain distribution is present on the upper scale.
Therefore, the RVE is required to be much smaller than the length scale L of the upper
scale,

a � L (5.2)

to enable a piecewise linear approximation of the inhomogeneous upper scale stress or
strain distribution. If it is not possible to account for this condition, because the RVE
size a is too large, further load distributions have to be applied on the RVE. A linear
strain distribution resulting from a moment is for instance used by Karkkainen and Sankar
(2006).

A special case of the RVE is the unit cell (UC). It is used in case the material has a periodic
substructure and it consists of only one single substructure. If such a periodicity occurs,
the requirement of statistical homogeneity is of no concern, thus l ≈ a. Therefore, a UC
is much smaller than an RVE, e.g. it contains 1 fibre instead of 100. Inhomogeneities like
cracks can spread through the whole UC, because they are assumed to appear periodically
in the whole material. Figure 5.2 shows a crack in a square micromechanical unit cell,
see section 6.2 with one quarter of a fibre and with four fibres. The cracks are identical
and periodic, thus, the stress-strain curves are identical as well. Therefore, it is possible
to determine strength and softening with a UC.
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If a material substructure is not strictly periodic due to imperfections and localized cracks
occur, a homogenization of unit cell strengths is not allowed, strictly spoken. However,
it has to be remembered that IFF does not lead to a single crack in a composite, but
to multiple cracks in the characteristic damage state due to the in-situ effect. Therefore,
IFF strength is not a classical material failure with a single localization, but a smeared
failure that appears throughout the whole layer. Thus, IFF localization does not occur
in composites on macroscale, but only in RVEs on micro- and mesoscale, respectively. In
this work, the application of a fracture energy regularization is used to enable strength
computation with UCs. The strain energy release rate is a material property, that incor-
porates micro-effects that make homogenization of strengths theoretically impossible. It
is the amount of energy dissipated through the coalescence of microcracks in an advancing
crack. This crack band has a material specific width, or characteristic internal length Li,
see table 4.1, that is determined by the heterogeneity of the material, i.e. the size of
its constituents and the microcracks. By using the characteristic internal length as size
of the unit cell and the strain energy release rate for regularization of the softening, the
localization can be smeared over the whole unit cell. Therefore, the unit cell is regarded
as representative also for the strength prediction.

(a) Quarter of a fibre (b) Four fibres

Figure 5.2: Crack under transverse compression in different unit cells

Nevertheless, in section 6.3.2 it is investigated if a randomized unit cell (RUC) can be
used for determination of strengths. The randomized unit cell is an approximation for
imperfect or inhomogeneous microstructures, it consists of randomly arranged fibres and
matrix. In contrast to a completely stochastic RVE, its structure is periodic, i.e. the
white fibre in Figure 5.3, lying on the boundary, can be found at the top and bottom of
the RUC. This is not necessarily the case in an RVE, but it is also not forbidden. Most
important, in combination with periodic boundary conditions, see below, the stress state
in the RUC is much smoother, because there are no stiffness singularities between the
boundaries. The effect of the periodicity vanishes with the number of fibres in the RUC.
Therefore, an RUC with a high number of fibres can be seen as an approximation of an
RVE.

In practice, the statistical homogeneity of an RVE is seldomly fulfilled, because the re-
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Figure 5.3: Randomized unit cell

quired large size of the RVE is numerically too expensive. Therefore, a number of smaller
RVEs is computed and the mean behaviour of these is taken as the homogenized macro
material behaviour. Thus, the RUC can be considered as equal to an RVE.

5.2.2 Boundary Conditions

The boundary conditions applied on the RVE/UC are as important as its geometry. In
the homogenization procedure the discontinuous stress and strain fields on the boundary
of the RVE/UC are averaged and taken as the macro-stresses and -strains, see Figure 5.4.
As a prerequisite, the boundary conditions of the RVE have to fulfill the Hill condition
(Hill (1963)):

〈σijεij〉 = 〈σij〉〈εij〉 . (5.3)

It states that the energy stored in the heterogeneous microfields σij and εij must be the
same as in the homogeneous macrofields 〈σij〉 and 〈εij〉.

<s>, <e>s, e

Figure 5.4: Averaging of stresses and strains of the RVE
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Homogeneous strain or stress micro-fields are the simplest valid assumptions for the un-
known micro-field. They are also called Voigt approximation, based on average strain
theorem, and Reuss approximation, based on average stress theorem. The Voigt approxi-
mation provides an upper bound for the elastic parameters, whereas the Reuss approxima-
tion gives a lower bound. If the elastic phases of a heterogeneous material are considered
as springs, the Voigt model represents parallel springs and the Reuss model represents se-
ries springs. Voigt and Reuss bounds are very important, but more exact approximations
are required. Therefore, several methods were presented in the past. For example, Hashin
and Shtrikman (1963) have formulated tighter bounds over a variational principle.

yy

zz

d
z

d
y

Figure 5.5: Displacement boundary conditions on randomized unit cell

In analogy to Voigt and Reuss bounds, displacement or force boundary conditions can be
applied on the RVE. Figure 5.5 illustrates displacement boundary conditions on a RUC,
where the displacement of each boundary is prescribed by a uniform value, e.g. δy and
δz. Thus, only the stress field has to be averaged in the example. However, displacement
boundary conditions add artificial stiffness to the RVE, therefore they represent an upper
bound, whereas force displacement conditions represent a lower bound. Another approach
are periodic boundary conditions (PBC) that can be seen as mixture of both. Periodic
boundary conditions enforce periodic displacements and anti-periodic tractions on either
side of the RVE/UC. Therefore, in an FE-mesh each node on the boundary of the RVE
is associated with the corresponding node on the other side of the RVE/UC. These nodes
share degrees of freedom (u,v,w) and therefore deformations and stresses are equal. How
PBCs are applied on the unit cell is presented in detail in the following sections. Compared
to DBC and FBC, PBCs give a considerably better prediction for the properties of the
RVE, however, it is not known whether they over- or underestimate the properties. In
case of a UC they give the exact solution, because of the periodic stress and strain fields
in the UC. Therefore, they are applied on the UCs computed in chapters 6 and 7.
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5.2.2.1 General Periodic Boundary Conditions

Super-degrees-of-freedom usuper, vsuper, wsuper that are representative for the mean defor-
mation of the whole RVE are introduced for application of periodic boundary conditions.
They are coupled with the boundary as shown in Figure 5.6. Nine super-degrees-of-
freedom are needed for a threedimensional RVE, three degrees-of-freedom times three
boundary pairs. In Figure 5.6 only two super-degrees-of-freedom are shown for reasons
of simplicity. For an RVE with the dimensions a, b and c in x-,y- and z-direction the
periodic boundary conditions can be written as

v(x, 0, z) + vsuper
1000 = v(x, b, z)

w(x, y, 0) + wsuper
1000 = w(x, y, c) . (5.4)

If a displacement δy is applied on node 1000 the whole RVE is elongated by δy, but the
shape of the boundary is not prescribed, i.e. the distance between the corresponding
nodes, e.g. 1 and 11, is equal for all nodes, but the absolute displacements are free. The
displacement of node 1000 in z-direction is correlated to Poisson’s effect under such load
conditions.
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Figure 5.6: General Periodic boundary conditions

In ABAQUS these boundary conditions can be applied on matching nodes of opposite
RVE boundaries using the *EQUATION Keyword. It has to be pointed out that the intro-
duction of these boundary conditions on the whole RVE slows down a simulation with
an explicit time integration scheme. Sometimes it is possible to avoid the application of
such boundary conditions on the whole RVE, i.e. the deformations in the x-direction in
Figure 5.6 could be assumed to be evenly distributed over the whole RVE without loss of
generality.
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In practice, an advantage of this method is that the mean deformations and stresses needed
for the homogenization are already summarized as displacements δi and reaction forces Fi

in the super-nodes by the FE-program. How the elastic parameters are determined from
these values is described in section 5.2.3.

5.2.2.2 Periodic Boundary Conditions for Symmetric Unit Cell

The micromechanical unit cells with square and hexagonal fibre arrangement, presented in
chapter 6, and the mesomechanical unit cell for a non-crimp fabric, presented in chapter 7
are symmetric structures. If a symmetric structure is subject to a symmetric load it
will exhibit symmetric deformations. Therefore, simplified periodic boundary conditions
can be applied, as described by Sun and Vaidya (1996). To determine all homogenized
material parameters it is necessary to apply direct (or: normal) and shear load on the
micro- and mesomechanical unit cells. The simplified periodic boundary conditions for
these load cases are summarized in fig. 5.7 for an x-y-z coordinate system. Depending
on the load case, x, y and z are to be replaced by the directions of the layer, 1, 2 and 3.
Periodic boundary conditions require opposing unit cell boundaries to remain compatible
to each other, i.e. to show periodic displacements and anti-periodic stresses. Usually,
degrees of freedom of opposing nodes are connected over equations, but in the case of a
symmetric unit cell the boundaries can be assumed to remain even due to the symmetry.

x

y

F

F dy

dx

a
b

(a) Direct load

x

y

F

F

F

F

dy

dx

(b) Pure shear load

x

y

F

F dy

(c) Simple shear load

Figure 5.7: Symmetric Periodic boundary conditions

Direct Load In case of direct load, see Figure 5.7(a) it has to be ensured that the
boundaries, which are axes of symmetry, remain even and a uniform displacement is
applied. Under a displacement load δx for most boundaries a deformation can be given
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u(0, y, z) = 0, u(a, y, z) = δx

v(x, 0, z) = 0 (5.5)

w(x, y, 0) = 0 .

So far, the boundaries are not different to displacement boundary conditions, however,
the other boundaries are allowed to deform, but to remain straight and orthogonal, which
can be realized by a linear equation

v(x, b, z) = v(a, b, c) = δy = const. (5.6)

w(x, y, c) = w(a, b, c) = δz = const. .

This is a hidden force condition, because it implies that the mean stress in y-direction is
zero on all y-boundaries and thus ensures anti-periodic tractions. The degrees of freedom
v(x, b, z) and w(x, y, c) are eliminated without the introduction of a further system of
equations, which is very efficient concerning the computational time. Like the general
periodic boundary conditions presented before a full three dimensional stress state is
present under these boundary conditions.

Shear Load For a symmetric unit cell under x-y-shear opposing boundaries of the unit
cell are enforced to remain parallel to each other:

u(0, y, z) = u(a, y, z)

v(x, 0, z) = v(x, b, z) (5.7)

w(x, y, 0) = w(x, y, c) = 0 .

Two different shear modes can be applied: simple shear and pure shear. In simple shear,
see Figure 5.7(c), displacements are applied only in one direction:

u(0, y, z) = u(a, y, z) = 0 (5.8)

v(0, y, z) = 0 (5.9)

v(a, y, z) = δy .

Through the reaction forces in x-direction at the opposing boundaries a moment is in-
troduced in the unit cell that causes an uneven σx-stress distribution on the (0, y, z) and
(a, y, z)-boundary. If the unit cell is only one element thick, the stresses are still equal
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on the opposing boundaries However, if the unit cell is thicker these are displacement
boundary conditions. The moment is not avoided by the application of pure shear:

u(x, 0, z) = −u(x, b, z) = −δx

v(0, y, z) = −v(a, y, z) = −δy , (5.10)

but an opposing moment is built up by the reaction forces in y-direction, see Figure 5.7(b).
However, this is only possible in the plane of isotropy, because otherwise the moments
would not have the same value.

5.2.3 Determination of Homogenized Material Properties

The forces F shown in fig. 5.7 are the integrals over the stresses of the boundary that are
equal to the sum of the nodal reaction forces and yield the homogenized stresses when
divided by the corresponding boundary area. Deformations δi convert into homogenized
unit cell strains and Poisson’s ratios. The homogenized Young’s Modulus is given as

Ex =
σx

εx

=

Fx

bc
δx

a
=

aFx

bcδx

(5.11)

based on engineering stresses and strain whereas the use of true stresses and strains yields

Ex =
σx

εx

=

Fx

(b−δy)(c−δz)

ln(a+δx

a )
. (5.12)

The homogenized Poisson’s ratio reads

νxy = −εy

εx

= −
δy

b
δx

a
= −aδy

bδx

(5.13)

based on engineering stresses and strain whereas the use of true stresses and strains yields

νxy = −εy

εx

= −
ln(b+δy

b )

ln(aδx

a )
. (5.14)

True stresses and strains are used here, however, the differences have proven to be negli-
gible in the considered examples.



104 Chapter 5. Multiscale Analysis

The shear modulus is given for simple shear as

Gxy =
τxy

γxy

=

Fy

bc
δy

a
=

aFy

bcδy

(5.15)

and for pure shear as

Gxy =
τxy

γxy

=

Fy

bc
2δy

a + 2δx

b

=

Fy

bc
4δy

a
=

aFy

4bcδy

. (5.16)

Here, engineering strains and stresses are used for the conversion

5.3 Multiscale Algorithm for Stiffness and Strength of

Textile Composites

Aim of the work is to determine stiffness and strength of textile composites via virtual
tests, see section 1.3. These mechanical properties are dependent on material inhomo-
geneities, e.g. the textile architecture, that have much lower length scales. Therefore,
a multiscale algorithm is used to model the effect of the inhomogenities on macroscale
material behaviour. It enables a replacement or at least an reduction of experimental
tests and makes it possible to provide stress-strain curves for the preliminary design. An
information-passing approach is used, thus different scales are simulated subsequently,
and material parameters are passed from lower to upper scale. On mesoscale a unit cell is
used to describe the textile architecture of the fibre bundles to provide material parame-
ters for the macroscale. The material parameters of the fibre bundles discretized in the
mesomechanical unit cell are computed with a micromechanical unit cell that describes
the behaviour of the UD-material of the fibre bundles.

An overview of the workflow is given in Figure 5.8. If only material parameters for fibre
and matrix are given, first of all a micromechanical unit cell is generated. It constitutes
of fibre and matrix and gives homogenized stress-strain curves of the UD-material. On
mesoscale, the textile architecture is modelled in the mesomechanical unit cell. Therefore,
the stress-strain curves from microscale are used as material input for the fibre bundles.
The homogenized stress-strain curves of the mesomechanical unit cell can then be used on
macroscale for strength computation of the textile laminate, e.g. in a three-point bending
test.

Four major challenges arise from the whole task:

1. Proper material model and softening formulation for the description of epoxy resin
and UD-material
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Figure 5.8: Multiscale algorithm

2. Identification of material parameters

3. To model the textile architecture accurately

4. Application of valid boundary conditions on the unit cells

Two very accurate material models for the description of the non-linear, pressure-dependent
material models have been presented in chapter 3. The identification of material para-
meters for these models is very easy, because hardening curves are used as input for the
nonlinearity. Furthermore, sophisticated failure criteria and damage formulations have
been developed for epoxy resin and UD-composites, see chapter 4. A speciality of the
presented algorithm is that the resulting stress-strain-curves of the lower scale computa-
tions are required as input parameters of the upper scale material models. Therefore, the
transition between the scales is very smooth. Periodic boundary conditions for the unit
cells are introduced in the previous section 5.2. In the following sections the modeling of
the textile architecture will be presented.
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5.3.1 Micromechanical Unit Cell

The micromechanical unit cell constitutes of fibre and matrix. It is needed to determine
the nonlinear material behaviour and strength of UD-composite material, especially the
tows in the mesomechanical unit cell. Material parameters for epoxy resin and fibres
are required for this computation. Fibres are considered to behave linearly elastic up to
fracture. The nonlinear plastic behaviour of epoxy resin is input as a stress-strain curve.
A strain energy release rate of the epoxy has to be given for the description of softening
behaviour. Different unit cell geometries, including random fibre arrangement and the
virtual tests carried out with these unit cells are given in the following chapter 6.

5.3.2 Mesomechanical Unit Cell

On the mesoscale the textile fibre architecture is considered. The unit cell can incorporate
one layer of a non-crimp fabric or MLG or it can comprise several fabrics. Both approaches
have particular advantages and drawbacks, as described in chapter 7, where mesoscale
virtual tests are presented.

The unit cell mainly constitutes of the tows that are modelled as transversely isotropic
UD-composite material presented in section 3.2. Epoxy resin pockets between the tows
are modelled with the isotropic material given in section 3.1. Both constituents show
nonlinear behaviour and stress-strain curves for the plastic regime have to be given. The
material parameters required for the tow material can either be taken from unidirectional
test specimens, where given, or from micromechanical unit cell computations. A strain
energy release rate is required for the softening formulation.

The mesomechanical unit cell gives stress-strain curves of the textile composite that can
be used for the extraction of elastic and inelastic material parameters for an orthotropic
material on the macroscale, see Figure 5.8.

5.3.3 Macroscale Computations

Macroscale simulations are presented in chapter 8 as a validation of the material parame-
ters determined with the mesomechanical unit cell.

On the macroscale different modelling strategies can be used: layer and textile layer ho-
mogenization. Layer homogenization is common for UD-composites where it is combined
with Classical Laminate Theory. For textile composites it is potentially more useful to
apply homogenization of whole textile layers, where all layers of one textile layer are com-
bined in one anisotropic lamina, because the layers are connected by through-thickness
reinforcements.



6 Micromechanical Unit Cell Examples

In this chapter, methods for stiffness and strength determination of UD-composites are
presented. All methods have in common that they predict the material properties of UD-
composites from the material properties of fibre and matrix, as well as the fibre volume
fraction vf . Section 6.1 gives an overview on analytical rules of mixture from literature
that are widely employed for stiffness prediction. In the following section, the use of
unit cells with an assumed perfectly periodic fibre arrangement for the determination of
stiffnesses and strengths of UD-composites is presented. To investigate the influence of
the assumed perfectly periodic fibre arrangement, randomized unit cells are analyzed in
Section 6.3.

6.1 Analytical Rules of Mixture for Stiffness and Strength

of UD-composites

Analytical rules of mixture for stiffness of UD-composites are state of the art. Especially
for Young’s Modulus in fibre direction a very good estimate is

E|| = EF ∗ ϕ + EM ∗ (1− ϕ) . (6.1)

Here, EF is Young’s Modulus of the fibre in longitudinal direction, EM is Young’s Modulus
of the matrix and ϕ is the fibre volume fraction. It has to be noted that this is the most
influential of the elasticity constants, because the fibres are mainly responsible for load
carrying in composites. Furthermore, it has to be stressed, that this constant is subject
to reasonable variance in experimental tests. Between tensile and compressive Young’s
Modulus a difference of 10% is not unusual.

If strength of the epoxy resin is neglected in fibre direction, the strength of the UD-

composite in fibre direction R
t,c
‖ can be calculated analytically from the strength of the

fibre Rt,c
fibre and fibre volume fraction vf

R
t,c
‖ = R

t,c
fibre ∗ vf . (6.2)

For other elasticity constants various approximations exist that yield quite different re-
sults. Therefore, they are presented in the following sections.

107
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6.1.1 Transverse Young’s Modulus E⊥

Most of the rules of mixture for the transverse Young’s Modulus E⊥ are based on micro-
mechanical models. One of the easiest is the parallel springs model that is based on the
average strain theorem:

E⊥ =
EH

MEF

EF (1− ϕ) + EH
Mϕ

(6.3)

with

EH
M =

EM

1− νM
2

. (6.4)

It gives an upper bound. Amongst others formulas were presented by Chamis (1987)

E⊥ =
EM

1−√ϕ(1− EM

EF⊥
)

, (6.5)

and Geier (1982)

E⊥ =
1

Ss − (0.2 + 0.4ϕ)(Ss − Sq)
(6.6)

with

Ss =
ϕ

EF⊥
+

1− ϕ

EM

, Sq =
1

ϕEF⊥ + (1− ϕ)EM

. (6.7)

Results of these formula for the materials investigated in the following chapters are given
in Figure 6.26.

6.1.2 In-Plane Shear Modulus G‖⊥

Rules of mixture also exist for the in-plane shear modulus G‖⊥. The Parallel Springs
model:

G‖⊥ =
GF GM

GF (1− ϕ) + GMϕ
(6.8)

again can be seen as an upper bound. Other equations were presented by Chamis (1987):

G‖⊥ =
GM

1−√ϕ(1− GM

GF⊥
)

. (6.9)

and Geier (1982)

G‖⊥ =
1

Gs − (0.4 + 0.4ϕ)(Gs −Gq)
, (6.10)
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with

Gs =
ϕ

GF‖⊥
+

2(1− ϕ)(1 + νM)

EM

, Gq =
1

ϕEF⊥ + (1−ϕ)EM

2(1+νM )

. (6.11)

Figure 6.27 shows the results of these formulas for the example of an E-Glass/RIM135-
UD-composite.

6.2 Periodic Unit Cells

The rules of mixture give very good estimates for the fibre direction, but the predictions for
the other directions are rather inprecise and ambiguous. Furthermore they lack to predict
inelastic properties such as strength and plastic hardening. Thus, a micromechanical unit
cell can be used to determine these parameters, if experimental data are not available.
This is often the case for textile composites, because the tests required cannot be done
with the whole preform, but only with a part of it, the fibre bundles. Thus the specimens
would have to be produced especially for these tests.

(a) Micrograph

square hexagonal

(b) Square and hexagonal arrangement

Figure 6.1: Micromechanical unit cell

A micrograph of unidirectional composite material is shown in Figure 6.1(a). It might
be possible to model fibre and matrix arrangement in a finite element mesh to find out
the behaviour of this UD-layer. However, it has to be noted that the fibre arrangement
seen in this figure is not constant in the whole layer, it looks completely different at
another cross section. Therefore, it becomes clear that an exact modelling the fibre
arrangement is not reasonable and that assumptions have to be done. Neglecting the
random fibre distribution over the cross section, perfectly periodic fibre arrangements,
square or hexagonal are usually assumed, as shown in Figure 6.1(b). A unit cell can be
used for simulation of such a periodic arrangement, so only one fibre has to be discretized
in the square arrangement or five in hexagonal arrangement, indicated by boxes. For
symmetric load cases, these unit cells can even be reduced further to a quarter of the
original unit cell, because of their symmetric geometry. A square unit cell containing a
quarter of a fibre is shown in Figure 6.2.

To determine stiffness, hardening and strength parameters in directions apart from fibre
direction, four virtual tests, summarized in fig. 6.3, have to be computed: tension, shear
and compression in transverse direction and in-plane shear. The transverse shear test
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Figure 6.2: Discretization of one quarter of micromechanical unit cell

is only necessary because of the pressure-dependency of the epoxy resin. Otherwise,
the transverse shear modulus G⊥⊥ could be determined from Young’s Modulus E⊥ and
Poisson’s Ratio υ⊥⊥, which are both determined under transverse normal load, over

G⊥⊥ =
E⊥

2(1 + υ⊥⊥)
. (6.12)

This relation is valid because of the isotropic behaviour in the 2-3-plane.
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Figure 6.3: Virtual tests for homogenization
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All virtual tests are simulated with periodic boundary conditions for symmetric unit cells
given in section 5.2.2.2. In-plane shear is applied as simple shear, whereas for transverse
shear pure shear boundary conditions are used. The elastic material constants are then
determined by the formulas given in section 5.2.3, the maximum stress in the stress-strain
curve is taken to be the strength of the material.

Convergence The convergence of the presented material in combination with the voxel
mesh is very good as seen in fig. 6.4. It shows stress-strain curves from computations
on the micromechanical unit cell under transverse compression and in-plane shear with
different mesh refinements (40x40, 80x80 and 160x160 elements).
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Figure 6.4: Stress-strain curves of micromechanical unit cell computations with different
element number

Size of unit cell If strengths of UD-composites are determined with a unit cell, it has
to be considered how and at which scale the strengths of the materials in the unit cell
have been determined. The strain energy release rate, or fracture energy, used in this
work for the softening formulation is a size-dependent value as well. It is a macroscale
material property that describes the development and coalescence of multiple microcracks
into a single macroscale crack. Therefore, microscale inhomogeneities, i.e. random fibre
arrangement, residual thermal stresses, interface/interphase between fibre and matrix, are
contained in this property and influence it. Random fibre arrangement plays an important
role, because it causes local stress peaks that initiate and promote crack growth.

The strain energy release rate Gf = 0.165 N
mm

of a UD-layer, given in the WWFE, is used
here, to cover all microscale inhomogeneities of the UD-layer. Therefore, microcracks,
residual thermal stresses, interface as well as interphase strength are contained indirectly
in the simulation without being modelled explicitly. The use of this strain energy release
rate, however, requires the unit cell dimension to comply with the characteristic internal
length given in table 4.1, i.e. the size of the localization zone in the experiment. If the unit
cell is smaller than the internal length, respectively the localization zone, the results are
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physically not valid. In the softening process the elastic strain energy stored in the unit
cell is dissipated by a crack through a single element row. The elastic energy, however, is
dependent on the dimension of the unit cell, i.e. in a larger unit cell the crack evolutes
faster than in a smaller one. Therefore, it becomes clear that the outer dimensions of the
unit cell have an important influence on the softening behaviour of the unit cell. An outer
dimension of 1 mm x 1 mm is chosen for the unit cell as a conservative assumption. The
geometry of the unit cell must be seen as an expression for the mean stress inhomogeneities
induced by the different stiffness of the components fibre and matrix, it does not stand
for a single fibre at the microscale. The crack is a representation of multiple microcracks
induced by microscale inhomogeneities and coalescing in a single macrocrack. Therefore,
only one crack of one element thickness is allowed in the unit cell, because otherwise too
much strain energy would be released in the softening process.

6.2.1 Comparison with Test Results from WWFE

For a validation of the micromechanical unit cells, experimental results of the WWFE on
UD-composites made of glass fibres and epoxy resin MY750/HY917/DY063 with a fibre
volume fraction of vf = 0.6 are used. Both are isotropic materials, whose elastic material
parameters and strengths are well known, see table 6.1. However, hardening curves under
tension and shear are required for the material model presented in section 3.1 that is
used here. Such hardening curves are not given in the WWFE, therefore the hardening
of epoxy resin RIM 135, shown in Figure 2.1 are used instead. In table 6.1 it can be seen
that this epoxy resin is very similar to MY750/HY917/DY063.

A summary of the material parameters determined with the four virtual tests described
above is given in table 6.2. Results are given for experimental tests from the WWFE and
for virtual tests with square and hexagonal unit cell.

The square unit cell does not show transversely isotropic material behaviour, although
stiffness and strength are equal in 2- and 3-direction. It becomes obvious that the be-
haviour is orthotropic by comparison of transverse shear modulus G⊥⊥ determined from
the virtual transverse shear test and from eq. 6.12, both shown in table 6.2. These values
should match if transversely isotropic behaviour exists, but they do not. In contrast, the

Table 6.1: Material properties of fibre and matrix

Parameter Unit E-Glass RIM 135 MY750/HY917/DY063

Young’s modulus GPa 74 3.35 3.35

Strength MPa 2150/14501 69/120/552 80/1201

Failure strain % 2.950/1.9591 3.4/4.2/222 5./–1

Shear modulus GPa 30.8 1.24 1.24

Poisson’s ratio 0.2 0.35 0.35
1 tension/compression
2 tension/compression/shear
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Table 6.2: Mechanical properties of E-Glass/MY750/HY917/DY063-epoxy lamina

Properties Unit WWFE Hexagonal Square

unit cell

Longitudinal modulus1 E‖ GPa 45.6 45.7 45.7

Longitudinal tensile strength Rt
‖ MPa 1280. 1308. 1308.

Longitudinal tensile failure strain εt
‖ % 2.807 2.905 2.905

Longitudinal compressive strength Rc
‖ MPa 800. 870. 870.

Longitudinal compressive failure strain εc
‖ % 1.75 1.96 1.96

Transverse modulus1 E⊥ GPa 16.2 11.89 15.06

Transverse compressive strength Rc
⊥ MPa 145 118.5 149.5

Transverse compressive failure strain εc
⊥ % 1.2 1.07 1.05

Transverse tensile strength Rt
⊥ MPa 45 41.7 38.3

Transverse tensile failure strain εc
⊥ % 0.25 0.39 0.3

In-plane Shear Modulus1 G‖⊥ GPa 5.83 4.27 4.66

In-plane Poisson’s ratio υ‖⊥ 0.278 0.25 0.25

In-plane Shear Strength R‖⊥ MPa 73 56.0 51.7

In-plane Shear failure strain υ‖⊥u % 4 2.98 3.42

Transverse Shear Modulus1 G⊥⊥ GPa – 4.11 3.3

dito, G⊥⊥ = E⊥
2(1+υ⊥⊥)

GPa 5.79 4.25 5.97

Transverse Poisson’s ratio υ⊥⊥ 0.4 0.4 0.262

Transverse Shear Strength R⊥⊥ MPa – 44.47 51.04

Transverse Shear failure strain υ⊥⊥u % – 1.49 3.17
1 Initial modulus

hexagonal unit cell shows (at least approximately) transversely isotropic material behav-
iour. However, compared with the test results from the WWFE, the overall performance
of the square unit cell is better.

To validate the presented model stress-strain curves from experimental tests on unidi-
rectional lamina published in the World-Wide Failure Exercise by Hinton et al. (2004)
are compared with stress-strain curves from the square micromechanical unit cell. In the
WWFE test results are given for transverse compression and in-plane shear of unidirec-
tional lamina comprised of E-Glass fibres and epoxy resin MY750/HY917/DY063 with a
volume fraction vf = 60%. The stress-strain curves are shown in Figure 6.5.

First of all, the virtual tests reproduce the main characteristics of the experimental re-
sults very good. The material and softening model are obviously able to describe the
material characteristics well. Under compression, the results are in good agreement with
the experimental curves, although the nonlinearity is not modelled too well. Parameter
fitting by lowering the strength to 100 MPa and increasing the strain energy release rate
to Gf = 0.330 N

mm
yields a better correspondence between test and simulation, see Fig-

ure 6.5. It can be seen, that the strain energy release rate is a very influential value, see
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Figure 6.5: Stress-strain curves of micromechanical unit cell computations compared with
test results from WWFE

also Rolfes, Ernst, Hartung, and Teßmer (2006)

Under shear, the test results are much stiffer, about 25%, than the unit cell computa-
tions. A probable weakness of the unit cell is the periodic fibre arrangement, because
it can be shown that a random fibre arrangement has an considerable influence on the
shear behaviour, see section 6.4. However, Hinton states in the WWFE that the exper-
imental determination of shear and compression properties is particularly difficult and
material data given might be inaccurate. The hardening curve provided by these micro-
mechanical unit cell computations is used in load case 14 in section 4.2.3 for validation of
the IQ-criterion and performs extraordinarily well. This allows the assumption that the
computed material behaviour might be more realistic than the experimental results. The
experimental results can be obtained in the computation by increasing shear modulus and
hardening curve by about 25%, as shown in Figure 6.5.

Fig. 6.6 shows the evolution of the crack path through the 40x40 elements unit cell. Under
in-plane shear a damage is initiated on the interface between fibre and matrix and then
localizes in a straight crack band through the unit cell. Under compression the crack is
not initiated on the interface but in the upper left corner were the highest strains are in
the matrix, but the crack then evolutes along the interface, where big shear deformations
occur.

The in-plane shear strength calculated here is a little lower than the shear strength of
the epoxy 51.74 MPa < 55.0 MPa. This result is reasonable because the crack runs
straight through the epoxy matrix, see fig. 6.6 and therefore the unit cell strength cannot
exceed the epoxy strength. Actually, it is a little smaller due to the inhomogeneous stress
distribution in the unit cell.

In principle, the strength of the unit cell is mainly dependent on the strength of the epoxy
matrix, which is the weaker of the two constituents. Therefore, an apparently implausible
result of the computation is that the strength under compression is higher than the one
given for the epoxy resin in tab. 6.1, the strength under uniaxial compression. However,
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(a) Transverse compression (b) In-plane shear

Figure 6.6: Damage evolution in micromechanical unit cell

in the micromechanical unit cell a three-dimensional stress state occurs. It is caused by
different Young’s modulus and Poisson’s ratio of fibre and matrix and the fact that the
unit cell is built of volume elements and not under plain stress conditions. In sec. 3.1
it can be seen, that the stress triaxiality has a considerable influence on the strength.
Multiaxial stresses under compression increase the strength, under tension the strength
decreases. The stress triaxiality p

σvM
in a square unit cell under transverse compression is

shown in Figure 6.7. For interpretation, table 6.3 shows the values of triaxiality the stress
states are associated with.

The area above the fibre, where failure is initiated, is loaded in a biaxial compression
stress state. Therefore, the material is able to carry higher loads than the given uniaxial
compressive strength. This is the reason why under compression the strength of the unit
cell is higher than that of epoxy under uniaxial compression and why under tension the
strength of the unit cell is very small. However, the stress triaxiality alone does not allow
for an estimation, where failure will be initiated, this can only be judged with the knowl-
edge of the absolute stress values. Figure 6.8 shows the distribution of the hydrostatic

Table 6.3: Values of stress triaxiality

Stress state p
σvM

Triaxial compression −∞
Biaxial compression −2

3

Uniaxial compression −1
3

Transverse shear 0

Uniaxial tension 1
3

Biaxial tension 2
3

Triaxial tension ∞
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Figure 6.7: Stress triaxiality p
σvM

in micromechanical unit cell under transverse compres-
sion

pressure and von-Mises stress in a square unit cell under transverse compression. It can
be seen that as well hydrostatic pressure as von-Mises stress are very high in the region
above the fibre.

6.2.2 Different Stiffness of Arrangements

Obviously the square arrangement is stiffer than the hexagonal arrangement, see also
Ernst et al. (2006). This can be easily understood when looking at the unit cells in
Fig. 6.9. Both unit cells have the same fibre volume fraction of Vf = 60 %. For transverse
compression fibre and matrix can be seen as series springs. The fibre is stiffer than
the matrix by an order of magnitude, therefore the matrix is mainly responsible for the
transverse stiffness. In the square arrangement the radius of the fibre is greater, i.e. the
proportion of the matrix dm in load-direction is smaller. Hence the square-packed unit
cell is stiffer than the hexagonal-packed unit cell. The strain distributions in Fig. 6.9 show
the relevance of this fibre to matrix proportion.
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(a) Hydrostatic pressure under transverse com-
pression

(b) Von-Mises stress under transverse compres-
sion

Figure 6.8: Stress Invariants in micromechanical unit cell

Figure 6.9: Strain distribution in square and hexagonal arrangement of unit cell

If the aspect ratio of the unit cell is varied keeping the volume fraction constant, the
stiffness of the unit cell changes according to Fig. 6.10. It is shown that the stiffness
of the unit cell is mainly dependent on the ratio of the epoxy to the height of the cell
re = dm

d
= dm

dm+df
. For unit cells with a small ratio re there are almost no differences

between hexagonal and square arrangement. With growing ratio re the results differ only
slightly. Thus it must be concluded that the square arrangement can be seen as an upper
bound, whereas the hexagonal unit cell represents a lower bound for a UD-lamina.

6.3 Unit Cells with Random Fibre Arrangement

The assumption of a periodic fibre arrangement is very common in micromechanical ap-
proaches for determination of stiffness and strength of UD-composites, but the conse-
quences are seldom investigated. Therefore, randomized unit cells will be studied in this
section. They incorporate from 4 up to 49 fibres that are distributed randomly over the
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Figure 6.10: Stiffness of square and hexagonal unit cells after variation of aspect ratio

unit cell. In Figure 6.11 three different examples for such unit cells are given. It has to
be noted that the unit cell is still periodic, see section 5.2. Each fibre that is cut by a
boundary is complemented on the other side of the unit cell.

Figure 6.11: Different distributions of 4 fibres

Periodic boundary conditions, described in section 5.2.2.1, and displacement boundary
conditions are applied on the randomized unit cells. Figure 6.12 shows the periodicity
of deformations and stresses in the unit cell under periodic boundary conditions. This
periodicity has of course an influence on the results, but its effect vanishes the more fibres
are incorporated in the randomized unit cell. The displacement boundaries are applied
for comparison. They introduce additional stiffness in the unit cell and therefore serve as
an upper bound, see section 5.2. This effect of additional stiffness also vanishes the more
fibres are incorporated in the randomized unit cell.

6.3.1 Linear-elastic Stiffness Prediction

As a first step, the elastic properties are determined with a linear-elastic material model.
Altogether four virtual tests are carried out on each randomized unit cell: tension in 2-
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Figure 6.12: Deformations and von-Mises stresses of randomized unit cells under tension

and 3-direction, simple in-plane shear and pure transverse shear. A double convergence
is needed in this procedure. Firstly, a convergence for a given number of fibres in the
randomized unit cell, i.e. a statistical mean is calculated for a number of randomized unit
cells. If this mean does not change significantly, when further results are included, the
first convergence is reached. This convergence is calculated for each number of fibres in
the randomized unit cell. Figures 6.13, 6.14, 6.15 and 6.16 show the convergence of the
mean elastic parameters over a number of tests with periodic boundary conditions for
different fibre numbers. Higher fibre numbers lead to a faster convergence and a smaller
standard deviation.
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Figure 6.13: Evolution of mean Young’s Modulus E22 and E33 over number of tests and
increased fibre number

In Figure 6.14 two values for the transverse shear modulus are given for each fibre number.
The first value (thick line) is “simulated” from the virtual test, the second, indicated by a
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Figure 6.16: Evolution of mean Poisson’s ratio ν23 over number of tests and increased
fibre number

“c”, is “calculated” from E22 and ν23 using eq. 6.12. For transversely isotropic behaviour
these values must be equal, which they are nearly for a high number of fibres. The
difference is greater for a small number of fibres, but converges against a small value of
about 2 %. Apparently, for a good description of shear behaviour a higher fibre number is
needed, because mainly the shear modulus from the virtual shear test changes. The small
remaining difference is probably caused by a modelling imprecision of the voxel mesh. If
two fibres touch each other in the voxel mesh, they are acting as a solid coalescence, that
influences shear deformations obviously more than normal deformations. For a smaller
fibre volume fraction of vf = 50 % the likeliness of such coalescences is reduced and there is
no difference between computed and calculated shear modulus for high fibre numbers, i.e.
the randomized unit cell behaves transversely isotropic. However, the error is negligible,
therefore no measures were taken to alleviate this modelling imprecision.

Shear modulus G12, Figure 6.19 and Poisson’s ratio ν23, Figure 6.20, are also influenced
considerably by an increasing number of fibres.

Figure 6.13 shows the Young’s Moduli E22 and E33, that can be considered to be equal. It
has to be noted that the influence of the number of fibres on the mean value is negligible.
Obviously the prediction is already very good with a small number of fibres. Besides,
there is no monotonic convergence trend for an increasing fibre number, because the
periodic boundary conditions do not represent an upper or lower bound. In Figure 6.17 the
predicted Young’s Moduli E22 and E33 are plotted against each other for each randomized
unit cell. Two interesting aspects can be seen. Firstly, for a low fibre number, plotted in
Figure 6.17(a) two barriers seem to exist, for low stiffness in each direction, that yield a
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characteristic triangular shape of the scatterplot. The higher the stiffness in one direction
the higher the stiffness also in the other direction. Randomized unit cells with a very
low stiffness in one direction also exhibit a very low stiffness in the other direction. In
these cells the fibres are dispersed very evenly, but their stiffness always remains above
the stiffness of the hexagonal unit cell E⊥⊥ = 11886MPa. Secondly, the variance of the
stiffness decreases and the scatterplot adopts a circular shape for increasing fibre numbers
in Figure 6.17(b).
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Figure 6.17: Young’s Modulus E22 over E33

The distribution of the elastic material constants is shown in Figures 6.18, 6.19 and 6.20
for 4 and 25 fibres. A normal distribution curve calculated from mean and standard
deviation is plotted in each histogram as a black line. For an increased number of fibres
the standard deviation and the width of the curve decrease. The histograms show an
unbalanced distribution of the parameters for a low fibre number, but for a high number
of fibres the distribution conforms to the normal distribution indicated by the black line.
It is interesting that the mean value of the Young’s modulus remains unchanged although
the distribution is changing noticeable.

Figure 6.21 shows the convergence of the mean values for an increasing fibre number in the
randomized unit cells that is the second convergence of this procedure. Young’s Moduli
E22 and E33, shear moduli G12 and G23 and Poisson’s Ratio ν23 are given under peri-
odic boundary conditions. Furthermore, values are also given for displacement boundary
conditions, indicated by “v” (for VOIGT), that can be seen as the upper bound (at least
for Young’s Modulus). Young’s Moduli determined by hexagonal and square unit cell are
shown for comparison as well as the calculated shear modulus indicated by“c”, description
see above. A number of 16 fibres obviously gives a converged result, although standard
deviations decrease further for increased fibre numbers.
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Figure 6.18: Histograms of Young’s Modulus E22 for different fibre number
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Figure 6.19: Histograms of shear modulus G12 for different fibre number
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Figure 6.20: Histograms of Poisson’s ratio ν23 for different fibre number
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6.3.2 Inelastic Computations

A number of randomized unit cells has been loaded under transverse compression with
the nonlinear material model for epoxy resin presented in section 3.1 and the failure
criterion given in section 4.1.1. Explicit time integration has been used to be able to
compute softening. Therefore, it was not possible to use the periodic boundary conditions
given in section 5.2.2.1, because they require solving an equation system that slows the
computation down drastically. Displacement boundary conditions have been used instead.
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Figure 6.22: Stress-strain curves of randomized unit cells with 4 fibres

The resulting stress-strain curves of 172 randomized unit cells with four fibres are shown
in Figure 6.22. A mean of these curves is given in Figure 6.23 with the blue line.

Basically, the random fibre distribution has a detrimental influence on the predicted
strengths, because brittle failure occurs. It leads to weakest link behaviour, i.e. the
weakest spot is responsible for the strength of the randomized unit cell. Therefore, an
increased number of fibres comes along with a higher probability of a weaker spot and thus
a decreased strength of the unit cell. This effect is illustrated very well by Figure 6.23,
where a stress-strain curve from randomized unit cells with 16 fibres is given as well. The
randomized unit cell with 16 fibres fails reasonably earlier than the 4-fibre unit cell. The
effect of the weakest spot is considerably high in the presented 4- and 16-fibre randomized
unit cells due to the comparatively low fibre number, compared to a UD-layer. Therefore,
a convergence of the strength with an increased fibre number is expected by the author,
because the influence of the weakest spot vanishes with higher fibre numbers. However,
higher fibre numbers have not been simulated due to the high numerical effort. Figure 6.24
shows the points of failure for all randomized unit cells that have been averaged for the
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Figure 6.23: Averaged stress-strain curves of randomized unit cells under compression,
sensitivity analysis

stress-strain curves in Figure 6.23 It can be seen that the randomized unit cells of equal
fibre number exhibit a very broad range of strength and that the ranges of the strength of
4- and 16- fibre RUCs overlap considerably. This overlap stresses the fact that a higher fi-
bre number leads to a lower strength only in a statistical sense, but that discrete examples
do not exhibit this behaviour.

The weakest link behaviour can be overcome by enabling higher plastic deformations in
the epoxy, that allow for a redistribution of the stresses. In the presented material model
this can be achieved by an increased compressive strength Rc

⊥. An increased compressive
strength of about 10 % leads to a 33 % increase in unit cell strength, shown in Figure 6.23.
Thus, the RUC strength is very sensitive against the strength of the epoxy resin.

The strength distribution shown in Figure 6.25 conforms to the normal distribution inde-
pendently on the number of fibres in the randomized unit cell even though the number of
samples is comparatively low due to the numerical effort.

Discussion First of all, it has to be noted that the computation of strengths with an
RVE/RUC is usually not permitted by the homogenization theory. The requirement of
statistical homogeneity of the RVE/RUC is violated by the localized crack running through
the whole RVE/RUC. However, the randomized unit cells can be seen as a parameter study
of possible fibre arrangements at the microscale. Therefore, material behaviour of epoxy
resin at the microscale is needed, that is different from the material behaviour observed in
macroscale experimental tests, described in section 2.1. Microcracks and other inhomo-
geneities existing in the material are contained in this macroscale behaviour. Considering
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Figure 6.25: Histograms of Strength Rc for different fibre number

the homogenized microcracks in the macroscopic behaviour it can be concluded that the
epoxy resin has a much more ductile behaviour on the microscale. It has been shown in
Figure 6.23 that the ductility of the material and the strength have a over-proportional
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influence on the strength of the RUC.

Furthermore, the strain energy release rate used here in the softening formulation is a
macromechanical material property that is determined in an experimental test. Therefore,
it incorporates the effect of the weakest spot, which is modelled with the random fibre
arrangement as well, i.e. it is simulated twice. Thus, it would be necessary to determine
material behaviour of epoxy at the microscale and to find out more about microcracks
and other material inhomogeneities to build a more representative microscale structure.
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6.4 Summary

Figure 6.26 gives a summary on the predicted transverse modulus E⊥ = E22 = E33 for
different volume fractions. Results are given for the rules-of mixture given in section 6.1,
randomized unit cells with periodic boundary conditions “RUC PBC”, as well as with dis-
placement boundary conditions “RUC DBC”, for periodic unit cells with square “UC sqr”
and hexagonal fibre arrangement“UC hex”and for experimental results from the WWFE.
The numerical predictions tend to be higher than the analytical ones and thus perform
better, because the test results are higher than all predictions. This is an interesting
result, because the randomized unit cell subjected to displacement boundary conditions
should give an upper bound.
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Figure 6.26: Transverse Young’s modulus E⊥ from test result, unit cell computations (25
fibres) and analytical rules of mixture

The transverse Young’s Moduli of the randomized unit cells lie between periodic square
and hexagonal arrangement also for other fibre volume fractions than vf = 60 %. Fig-
ure 6.27 shows the estimated in-plane shear moduli G‖⊥ = G12 from rules-of mixture
and numerical approaches. Interestingly, the randomized unit cells predict higher values
than the periodic unit cells, that agree better with the experimental results. Once again,
this result stresses the prominent influence of the random fibre arrangement seems on the
shear behaviour.

Compared to the experimental results, the square unit cell yields a better overall predic-
tion, although it does not exhibit transversely isotropic behaviour. However, the predic-
tion of the transverse shear modulus should be neglected and the calculated transverse
shear modulus should be used instead.
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Figure 6.27: In-plane shear modulus G‖⊥ from test result, unit cell computations (25
fibres) and analytical rules of mixture

The inelastic simulations on the randomized unit cells show that strength prediction with
representative unit cells is problematic, especially because the results are very sensitive.
However, the results of the periodic unit cell are promising, in spite of the substantial
assumption of periodic fibre arrangement.



7 Mesomechanical Unit Cell Examples

The mesomechanical unit cell is used to model the fibre architecture and to determine
material properties of textile composites on macroscale. The number of layers homog-
enized in one lamina depends on the type of preform. In the following examples for a
mesomechanical unit cell of a non-crimp fabric, see fig. 7.2 and a weft-knitted fabric, see
fig. 7.10 are given. Both examples consist of glass fibres and epoxy resin Rim 135.

In general, cracks in a composite firstly evolute in the layers and secondly between layers.
Thus, regarding progressive failure of the structure it is advantageous to model each layer
in one separate lamina on the macroscale, because damage can be easily attributed and
identified for each layer separately. For textile composites this means to neglect some ef-
fects of the fibre architecture, that connects the layers, on the material behaviour. In case
of the non-crimp fabric each layer is modelled separately, because through-thickness rein-
forcement density and influence are considerably low. Thus, the advantage of modelling
each layer in separate lamina prevails a neglect of some reinforcement influence. However,
in case of the weft-knitted fabric the material inhomogeneity is more pronounced, thus
it is only possible to identify single fibre bundles rather than separate layers. Therefore
one lamina on the macroscale has to represent two fabrics at once. On macroscale both
examples are treated as orthotropic textile layers, so nine elastic material constants and
nine strengths have to be determined.

Due to periodicity of stitching and knitting patterns a unit cell is used. The fibre bundles
are modelled as transversely isotropic UD-material described in sec. 3.2, epoxy resin with
isotropic material described in sec. 3.1.

Voxel meshing, see section 4.1.5, is used for discretization of the unit cell. It is required for
the softening formulation to work properly. Furthermore, the definition of clear boundaries
between fibre bundle and epoxy is problematic, because the fibre bundle itself contains
epoxy and thus it is not clear where the fibre bundle ends and the epoxy resin pocket
begins.

7.1 Material Parameters of Fibre Bundles

The material parameters for the fibre bundles are determined with a square micromech-
nical unit cell. The homogenized stress-strain curves of the four required virtual tests
are given in Figure 7.1. Material parameters for epoxy resin RIM 135 are given in
tab. 6.1, the plastic hardening curves are shown in fig. 3.5 and the strain energy release
rate Gf = 0.165 N

mm
is taken from the similar material of the WWFE.

131
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Figure 7.1: Stress-strain curves of square micromechanical unit cell computations for use
in mesomechanical unit cells vf = 0.5

Figure 7.1 illustrates the pressure dependent behaviour of UD-composites: a pronounced
plastic hardening is found only under shear. The material parameters in longitudinal di-
rection are determined with rules-of-mixture, see section 6.1, the remaining are determined
from these curves, see table 7.1.

7.2 Non-Crimp Fabrics

Unit cell

(a) Scan of NCF (b) Discretization

Figure 7.2: mesomechanical non-crimp fabric unit cell

Figure 7.2(a) shows a scan of a dry, unimpregnated non-crimp fabric. The lay-up of this
fabric consists of four layers with the stacking sequence [0°/-45°/90°/45°], the upper 0°-
layer can be seen. However, the layers have different thicknesses, the thickness fractions
are (48.7 % 0°, 23.0 % -45°, 4.8 % 90°, 23.0 % 45°). They are held together by a PES-yarn
that has a mass fraction of 0.5 %. The periodic (trikot) stitch pattern has a spacing
of the stitches of 5 mm in 0°- and 90°-direction. Of all textile fabrics the structure of
the non-crimp fabric resembles UD-laminates most. Fibre layers can easily be identified
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Table 7.1: Mechanical properties of E-Glass/RIM 135 fibre bundles

Properties Unit square unit cell

Longitudinal modulus1 E‖ GPa 38.7

Longitudinal tensile strength Rt
‖ MPa 1075.

Longitudinal tensile failure strain εt
‖ % 2.905

Longitudinal compressive strength Rc
‖ MPa 725.

Longitudinal compressive failure strain εc
‖ % 1.96

Transverse modulus1 E⊥ GPa 11.07

Transverse compressive strength Rc
⊥ MPa 128.5

Transverse compressive failure strain εc
⊥ % 1.21

Transverse tensile strength Rt
⊥ MPa 40.3

Transverse tensile failure strain εc
⊥ % 0.4

In-plane Shear Modulus1 G‖⊥ GPa 3.51

In-plane Poisson’s ratio υ‖⊥ 0.264

In-plane Shear Strength R‖⊥ MPa 51.2

In-plane Shear failure strain ε‖⊥u % 4.64

Transverse Shear Modulus1 G⊥⊥ GPa 2.63

dito, G⊥⊥ = E⊥
2(1+υ⊥⊥)

GPa 4.19

Transverse Poisson’s ratio υ⊥⊥ 0.32

Transverse Shear Strength R⊥⊥ MPa 51.4

Transverse Shear failure strain ε⊥⊥u % 4.08
1 Initial modulus
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and the disturbance through stitch yarns is comparatively low. Therefore, it is logical to
model each layer of the non-crimp fabric separately to identify the material parameters. In
Figure 7.2(a) several unit cells for this purpose are marked on the dry fabric. A comparison
of the marked areas reveals that the periodicity of the pattern has several imperfections.
During impregnation the shape of these imperfections will probably be changed and it
would be an interesting prospect to identify different imperfections and their influence on
the material parameters. In this work the imperfections will be neglected and a perfectly
periodic unit cell is assumed. This is only a small simplification, because the non-crimp
fabric is a periodic structure through the stitch pattern.

Lomov et al. (2002) describe the internal structure of non-crimp fabrics in great detail.
They give measures for the epoxy resin pockets around the through-thickness stitches
based on the stitching parameters and for channels for the in-plane part of the yarns
on the face and back of the non-crimp fabric. In this work, however, the in-plane part
of the yarn and its channels are neglected, because the yarn has a very small diameter
and provides 0.5% of the mat weight. Furthermore, the PES-yarn has not such a good
mechanical performance as the glass fibres. Lomov et al. (2002) distinguish between
inner and outer layers of a non-crimp fabric, but these differences are as well neglected
here. For the 45°-layers another unit cell geometry would be favorable, but through the
wide spacing of the stitches and the high 0°-layer fibre proportion this difference can be
neglected. It has to be noted, that despite all simplifications the strengths determined
with this unit cell remain on the safe side in the macroscopic examples in chapter 8.

Figure 7.2(b) illustrates the discretization of the unit cell, it consists of 200x200x1 ele-
ments, and the layer coordinate system, where 1 is the fibre direction. The fibre bundle
structure in thickness direction is neglected, hence only one element is used in this di-
rection. Fig. 7.3 shows the different components, fibre bundle, epoxy resin pocket and
stitching yarn, of the unit cell and their dimensions. From the mat weight of the PES-yarn
a radius rN = 0.054 mm was calculated. After Lomov et al. (2002) an inner layer resin
pocket thus is LH = 2.64 mm long and bH = 0.352 mm wide.

It is clear that fibre undulations and local variations in the fibre volume fraction occur
around the epoxy resin pocket. The variable fibre volume fraction is neglected here. To
account for the variable fibre orientation around the epoxy resin pocket, a variation of
the material orientation in the elements is applied. An harmonic function is assumed to
describe the angle of misalignment

ϕ =
2π

l

[
bH

2
−

bH

5
− (y − (1− bH

2
cos2π

l
x))

1− bH

5
(1− cos2π

l
x)

]
sin

2π

l
x (7.1)

dependent on the coordinates x, y of the center point of the element, and the length l
of unit cell and width bH of the resin pocket. A distribution of the fibre misalignment
angles can be seen in Figure 7.4(a), where a unit cell with a reduced number of elements
is shown for reasons of clarity. To simplify preprocessing, the angles of misalignment are
not given exactly in each element, but grouped in seven groups. Figure 7.4 shows which
elements share a mean equal fibre orientation.
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Figure 7.3: Geometry of mesomechanical unit cell for non-crimp fabric

(a) Schematic Illustration of fibre undulations (b) Elements of equal fibre orientations

Figure 7.4: Fibre orientation in mesomechanical NCF unit cell

It has to be noted that the voxel meshing technique requires a thorough checking of the
mesh. Due to the serrated interface between different constituents it is possible that single
elements act as a notch and thus develop a big influence on strength of the unit cell.

The material behaviour of the fibre bundles in the mesomechanical unit cell has been
simulated with the material model described in sec. 3.2. Required mechanical properties
have been determined with the micromechanical unit cell, as described in the previous
section. The IQC and the softening formulation presented in section 4.2 are used for
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(a) Unfavorable configuration

(b) Favorable configuration

Figure 7.5: Different discretization of epoxy resin pocket with voxel mesh

strength prediction. To use one consistent set of material parameters, the results of the
square unit cell, listed in table 7.1, are taken as input here, because it overall yielded
better estimations, see section 6.4. For numerical regularization of FF a strain energy
release rate of Gf = 0.3 N

mm
has been used.

The simulated unit cell exhibits orthotropic behaviour, thus nine virtual tests are needed
to determine the material parameters. An overview is given in Figure 7.6. Tension and
compression are applied in each normal direction, with symmetric periodic boundary
conditions, described in section 5.2.2.2. Shear loads are applied in 1-2-, 1-3- and 2-
3-direction. In-plane shear (1-2-direction) is modelled with general periodic boundary
conditions, described in section 5.2.2.1, but top and bottom surface of the unit cell are
constrained in thickness direction, to save computational cost. For both other shear
load cases the general periodic boundary conditions require too much computational cost,
therefore symmetric periodic boundary conditions for pure shear are used.

Stress-strain curves for normal loads and shear are shown in fig. 7.7.

Under normal loads the material behaves nearly linear elastic until failure, whereas under
shear plastic deformations occur. Experimental tests with a new test method developed
by Hartung, Aschenbrenner, and Teßmer (2007) yield a through-thickness strength (in
3-direction) of 42 MPa to 52 MPa, which is in very good correspondence with the results
of the virtual tests presented in fig. 7.7(a). It is possible to compare these results, because
from the fracture surface of the specimens can be seen that intralaminar failure occurred.
Other results cannot be compared, because very special specimens would have to be
prepared consisting of only one layer with through thickness reinforcement. A validation of
the estimated material parameters is therefore carried out on the macroscale, see section 8.
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Figure 7.6: Load cases of mesomechanical unit cell for non-crimp fabric

Due to the localization of the plastic deformations in a shear band, seen in fig. 7.8(b) for
in-plane shear (marked with 12) the overall behaviour of the unit cell does not exhibit
such pronounced plastic deformations as the epoxy resin or fibre bundle material alone.
Fig. 7.8(a) also shows a crack under transverse tension that starts at the epoxy resin
pocket and evolutes into through the fibre bundles. The epoxy resin pocket does not
exhibit damage, because the tensile strength of epoxy resin is higher than the transverse
tensile strength of the fibre bundles. Under shear, fig. 7.8(b), both epoxy resin pocket and
fibre bundles show plastic deformations, but the crack starts in the fibre bundle because
the resin pocket is by far more ductile. Figure 7.8 shows very clearly that the cracks are
oriented in the material orientation and evolute parallel to the fibres.

The resulting stiffnesses and strengths are summarized in table 7.2.
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Table 7.2: Mechanical properties of non-crimp fabric layer made of E-Glass/RIM 135

Properties Unit Value

Longitudinal modulus1 E1 GPa 37.5

Longitudinal tensile strength Rt
1 MPa 762.1

Longitudinal compressive strength Rc
1 MPa 676.3

Transverse modulus1 E2 GPa 10.8

Transverse compressive strength Rc
2 MPa 128.8

Transverse tensile strength Rt
2 MPa 40.4

Through-thickness modulus1 E3 GPa 11.07

Through-thickness compressive strength Rc
3 MPa 128.5

Through-thickness tensile strength Rt
3 MPa 40.1

In-plane Shear Modulus1 G12 GPa 3.49

In-plane Poisson’s ratio υ12 0.25

In-plane Shear Strength R12 MPa 49.21

Out-of-plane Shear Modulus1 G13 GPa 4.33

Out-of-plane Poisson’s ratio υ13 0.25

Out-of-plane Shear Strength R13 MPa 48.42

Transverse Shear Modulus1 G23 GPa 2.52

Transverse Poisson’s ratio υ23 0.4

Transverse Shear Strength R23 MPa 38.13
1 Initial modulus
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Figure 7.7: Stress-strain curves of mesomechanical NCF unit cell computations
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(a) In-plane transverse tension (b) In-plane shear

Figure 7.8: Damage evolution in mesomechanical NCF unit cell
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7.3 Biaxial Weft-Knit Fabrics

In this section a unit cell of a biaxial weft-knitted fabric (BWKF) is described as an
example for a more complicated unit cell. The biaxial weft-knit fabric mainly consists of
tows in warp- and fill-direction, respectively. The layers are connected with a weft-knitted
glass-fibre yarn. Two of these textile layers are combined such that a [90°/0°//0°/90°] lay-
up is resulting. The fabric consists of glass fibres and is infiltrated with epoxy resin
RIM 135.

Compared to the non-crimp fabric described above, in the biaxial weft-knit fabric a thicker
yarn is used, although still the yarn diameter is smaller than the fibre bundle diameter.
Furthermore, the loops of the yarn are denser and the yarn is stronger, because it consists
of glass fibres instead of PE. The material structure of the biaxial weft-knit fabric is much
more heterogeneous, the individual fibre bundles are clearly identifiable in a ct-scan, see
Figure 2.9. In the draping process, the 0°-layers of the fabric thus penetrate each other and
”interlock”, as can be seen in Figure 7.10, where the smallest unit cell of the weft-knitted
fabric is illustrated. The unit cell consists of fibre bundles in warp- and fill-direction, the
knitting yarn and the epoxy resin. The fibre bundles and epoxy resin are discretized with
volume elements, whereas the knitting yarn, is modelled with embedded truss elements,
because of its lower diameter. On the right hand side of fig. 7.10 the epoxy resin is removed
to make the knitting yarn visible.

The dimensions of the unit cell are taken from Ulbricht and Haasemann (2007). Material
parameters for epoxy resin are given in table 6.1. For the fibre bundles the material
parameters are taken from table 6.2 for a fibre volume fraction of vf = 0.5. It is not
so important that the resulting fibre volume fraction of the unit cell is not very realistic,
because this example shall only demonstrate the general implications of modelling multiple
layers in one unit cell.
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Figure 7.9: Shear load cases of mesomechanical unit cell for weft-knitted fabric

Figure 7.9 summarizes the shear load cases applied on the unit cell. In all cases simple
shear has been used to keep the computational effort as low as possible. Normal loads
have been applied in analogy to the NCF unit cell.

Figure 7.11 shows the computed stress-strain curves of the weft-knitted fabric unit cell. In
comparison with the stress-strain curves of the NCF in Figure 7.7 the BWKF behaves less
linear, because of its multiple layers. Under tension first damage occurs at around 50 MPa
in 2-direction and at 140 MPa in 1-direction, but the load can be increased further.
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(a) Full unit cell (b) Only fibre bundles

Figure 7.10: Geometry of mesomechanical unit cell for two weft-knitted fabrics

These stress-strain curves can be used to define a homogenized orthotropic continuum as a
description of the weft-knitted fabric. This orthotropic continuum would be representative
for normal loads only, because of the assumption of a uniform stress distribution over the
RVE, see section 5.2. However, if a laminate consists of the two fabrics discretized in the
unit cell the macro-stresses are no longer homogeneous over the height of unit cell under
bending. Such a laminate shows pronounced differences in the bending stiffness dependent
on the direction. Therefore, the use of a standard orthotropic CAUCHY continuum is
problematic, because the different bending stiffnesses of warp- and fill-direction are not
considered.

Haasemann and Ulbricht (2006) thus present a COSSERAT continuum capable of ac-
counting for these different bending effects. It requires a number of additional virtual
tests on the mesomechanical unit cell for homogenization to include bending and torsional
deformation modes. Another possibility to include the direction-dependent bending and
torsional behaviour is a stiffness matrix equivalent to the ABD-Matrix that is used in
classical laminate theory. The description of inelastic material behaviour, however, be-
comes even more complicated in such approaches, because the all deformation modes are
probably influenced differently by localized inelastic effects. It is not an easy task to find
a formulation capable of describing these coupling effects and to identify the required ma-
terial parameters. Therefore, a layer-wise simulation seems favorable, even if it neglects
the coupling effects between the layers. In such a simulation the presented unit cell would
be divided in three layers, where tows of equal direction would be grouped in. It would
be an interesting prospect to quantify the errors of a layer-wise approach compared to a
textile layer-wise approach. Furthermore, the differences in computational effort of both
approaches are interesting as well.
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Figure 7.11: Stress-strain curves of weft-knitted fabrics unit cell



8 Macroscopic Examples

In this chapter macroscopic simulations are carried out to validate the multiscale algorithm
presented in this work. Therefore, experimental results from tests conducted by DLR
Braunschweig are compared with the computation. Firstly, a tensile test in 0°-direction of
a coupon specimen is used for validation of the determined in-plane stiffness and strengths.
Secondly, a 3-point bending test of a thick laminate gives information on how the model
performs in the computation of three-dimensional stress states.

An orthotropic, linear elastic material is used in combination with the failure criterion of
Juhasz, because nonlinear material models were not available. In contrast to the unit cell
simulations at micro- and mesoscale, plasticity plays a minor role in the simulations at
the macroscale, because the composite behaviour is dominated by the fibres, that behave
nearly linear elastic elastic. However, nonlinear material behaviour plays a role under
certain circumstances, e.g. in biaxial laminates under shear, but it can be neglected in
the presented examples without major consequences. The post-failure behaviour of the
material is crucial for a progressive damage analysis. The criterion of Juhasz is based on
Puck’s UD-composite criterion, therefore, it is possible to use the softening formulation
of Puck, see section 4.2.1.2 for the description of lamina softening. If tensile IFF occurs
(σn > 0), E22 and E33 are degraded simultaneously, an orthotropic damage is not included.
Material parameters were determined by the mesomechanical unit cell for a non-crimp
fabric presented in section 7.2.

8.1 Coupon Test

At DLR Braunschweig a coupon specimen made of two layers of non-crimp fabric was
tested under tension. The non-crimp-fabrics are arranged such that the 0°-layers are at
top and bottom. Therefore, the stacking sequence is [0°/-45°/90°/45°//-45°/90°/45°/0°].
It has to be noted that this is not a symmetric stacking sequence and the coupon exhibits
coupling effects between bending and extension. In the experiments the load was applied
displacement-driven and DMS were applied for measuring strains. The simulation was
carried out on a cutout of an infinite plate, see Figure 8.1, equivalent to the laminate tests
presented in section 4.2.3. Volume elements are used for the discretization of the laminate,
one for each layer. The boundary conditions are such that the in-plane deformations
are equal in all layers and that the elements remain rectangular. In through-thickness
direction no boundary conditions are applied, i.e. the elements can deform freely, but
through couplings the elements are forced to remain rectangular as well. Therefore, several
imperfections have been neglected.

144
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Figure 8.1: Discretization of coupon test
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Figure 8.2: Tensile test in 0°direction: stress-strain curve experimental results vs Simula-
tion

In Figure 8.2 the stress-strain curves from test and ABAQUS-simulation are compared.
The numerically predicted elastic material parameters are in excellent correspondence
with the test results. This can also be seen in Figure 8.3, where the material degradation
of the longitudinal secant Young’s Modulus is given over the applied strain. Furthermore,
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the degradation of the coupon due to inter-fibre failure is modelled very well. Therefore, it
can be concluded that the inter-fibre strengths, predicted by the mesomechanical unit cell,
and the softening formulation are very good. In fibre direction, the numerically predicted
σx = 445 MPa correspond very well with the mean coupon strength of σx = 466 MPa.
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Figure 8.3: Young’s Modulus from tensile test in 0°direction
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8.2 3-Point-Bending Test

To account for a three-dimensional stress state, a thick specimen with two holes was tested
under 3-point bending, see Figure 8.4. The specimen consists of 10 non-crimp fabrics
and is 10 mm thick as well as 25 mm wide. The stacking sequence is [0°/-45°/90°/45°//-
45°/90°/45°/0°]5. The load was applied displacement-driven up to a maximum deflection of
20 mm. A quarter of the model is discretized only with symmetric boundary conditions in
order to save computational time. The finite element mesh consisting of 158800 elements
(ca. 105x15x100) and the applied boundary conditions are shown in Figure 8.5. For
numerical stabilization a fracture energy regularization as described in section 4.2.2.3, has
been applied after FF. The strain energy release rate is chosen as small as possible such
that oscillations of the load-displacement curve due to FF are reduced as far as possible,
but the results are not influenced by the regularization. A parameter identification yielded
a value of Gf = 3.0 N

mm
as a practical solution.

45 mm

76 mm drilled hole 10 mm

u
z

Figure 8.4: 3-point-bending test

12

3

Figure 8.5: Finite-element mesh 3-point-bending test

Figure 8.6 shows, that the predicted elastic parameters match the experimental results
outstandingly well. The simulated load-displacement curve fits the experimental results
very good, although the results are conservative again. However, the material degradation
of the simulation given in Figure 8.7 corresponds extraordinarily well with the test data.
The strengths in transverse direction and the degradation could hardly get any better.
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Figure 8.6: 3-point-bending test: load-displacement curve experimental results vs Simu-
lation

The reason for final failure in the experiment is not documented, but delamination and
subsequent buckling of a small number of layers are very common failure mechanisms
in thick laminates. In the simulation, buckling occurs in the compression zone of the
specimen after FF of the 45-layers and leads to final failure. Buckling is made possible
by the degradation of material properties to 1 % of the initial value due to fibre failure,
which equals an delamination. This degradation is based on assumptions and could not
be validated. Therefore, more detailed test results, e.g. acoustic emission, would be very
helpful to be able to interpret the nonlinear specimen behaviour. Eventually, other test
setups might clarify the ongoing damage better than this very thick laminate.

The analytic solution given in Figure 8.6 is determined from the ABD-Matrix of an equiv-
alent laminate of UD-layers. The Young’s Modulus in specimen direction is given over

E1 =
1

a11d
, (8.1)

where a11 is the first entry of the inverse ABD-matrix , computed with classical laminate
theory, and d is the thickness of the laminate. With this Young’s modulus given, the ap-
proximate deflection of the specimen under a concentrated force can easily be determined,
if the drilled holes are neglected.

Figure 8.8 shows the von-Mises stresses in the specimen.

Figure 8.9 shows the inter-fibre damage in the bottom 90°-layer of the 3-point bending
specimen. The first crack originates in the middle of the specimen, which is at the left
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Figure 8.7: 3-point-bending test: Stiffness-displacement curve

boundary in Figure 8.9, where only a quarter of the specimen is shown. Secondly, a crack
is originated at the drilled hole. In the following cracks evolve in the shown typical pattern
that is in fact the characteristic damage state. This damage pattern evolutes in thickness
direction as well.

Figure 8.10 shows the FF damage variable at failure of the specimen. It can be seen
that multiple layers fail in the tension zone, which leads to a complete failure of the
specimen. The maximum load carried by the specimen is 3.0 MPa, which is a very good
result compared to the mean result of the experiments, 3.4 MPa, with a deviation of only
12 %. In the previous section it has been shown that the strengths determined with the
mesomechanical unit cell are in excellent correspondence with the experimental results,
therefore it must be concluded that softening after FF is underestimated in the simulation.
It has been reported by Maimi, Camanho, Mayugo, and Davila (2006) that it is important
to model FF softening to yield good results. Actually, an increased strain energy release
rate yields higher maximum loads, however, these values are hypothetical. Therefore,
a slightly conservative result based on validated strengths is preferred over an excellent
result without validation.
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Figure 8.8: 3-point-bending test: finite-element mesh, fibre direction stress
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Figure 8.9: 3-point-bending test: damage in bottom 90°-layer, characteristic damage state
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Figure 8.10: 3-point-bending test: finite-element mesh, FF damage variable at failure
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8.3 Summary

In the coupon test it was shown that stiffness and strengths have been predicted very
well in the mesomechanical unit cell. This is an outstanding result, considering that only
fibre and epoxy resin material behaviour were used as input. The predicted parameters
allow for an excellent simulation of first-ply failure without any difficulty. Furthermore, the
progressive damage up to the first FF is modelled extraordinarily well in combination with
the failure criterion of Juhasz and the degradation model of Puck. In the 3-point bending
test the progressive damage is modelled very well even after FF occurs in the model. The
final failure of the model is not reached, probably because of an underestimated remaining
strength after FF.

However, the presented softening formulation is capable of delivering reliable predictions
of IFF, progressive damage after IFF, and FF, only softening prediction after FF has to
be improved. Considering the current design philosophies in industry, that do not allow
for any damage in most instances, the presented multiscale analysis is thus capable of
providing all required material parameters and even enables substantial improvements in
the description of progressive damage.



9 Summary and Conclusion

9.1 Summary

A major advantage of FRP compared to other materials is the possibility to design the
material for its special purpose. Textile composites offer an additional degree of adapt-
ability through the textile fiber architecture compared to UD-composites. It is essential
for the design process to predict the material properties, because experimental testing
is costly and time consuming. A literature review shows that numerous multiscale al-
gorithm have been proposed in the literature for the prediction of material properties
of textile composites, but the nonlinear material behavior of the constituents has been
disregarded so far. However, the material nonlinearity is crucial for a realistic description
of composite strength. Therefore, a multiscale algorithm is developed in this work that
focuses on the use of appropriate material and softening models. For this purpose, mate-
rial models, failure criteria and softening formulations are presented that account for the
pressure-dependent nonlinear behavior of epoxy resin and UD-composites.

The multiscale algorithm includes unit cells on micro- and mesoscale. Virtual tests are
conducted with these unit cells for determination of UD-composite and textile compos-
ite stiffness and strength. UD-composite behavior is important in this context, because
the mesomechanical unit cell mainly consists of fiber bundles, that can be seen as UD-
composites. It should be noted therefore, that this multiscale algorithm is able to deter-
mine nonlinear UD-composite behavior and strength along the way as well.

The virtual tests are compared with experimental results, where data are available. Fi-
nally, two macroscale examples are simulated to prove the performance of the algorithm,
material models, failure criteria and softening formulations.

9.1.1 Material Model

Epoxy resin and UD-composites exhibit pressure-dependent nonlinear material behavior,
i.e. different behavior under tension, shear and compression. For example, under shear
great plastic deformations occur, whereas under tension both materials behave nearly
brittle. Therefore, invariant-based material formulations are presented that allow for a
consideration of the pressure-dependency. Quadratic yield criteria and tabulated harden-
ing curves allow for pressure-dependent hardening.

A major advantage of the hardening model is that the input parameters, hardening curves
under tension and shear, are physically meaningful. This is very important for handling
of the material model, because it makes checking the input deck easy.
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9.1.2 Failure Criteria and Softening Formulations

Failure of epoxy resin, UD-composites and textile composites is also pressure-dependent.

For epoxy resin, an invariant based failure criterion is presented that has a quadratic
shape under tension and a linear under compression, to account for different failure mech-
anisms. The material softening is regularized with a fracture energy approach presented
by Hillerborg et al. (1976), to assure a mesh independent solution.

For UD-composites, the invariant-based quadratic criterion (IQC) is presented. It bases
on the same invariants as the material model for UD-composites and has a quadratic
shape. A softening formulation with the fracture energy regularization of Hillerborg is
used for the prediction of progressive damage. The IQC is validated on 14 test cases
published in the World-Wide Failure Exercise of Hinton et al. (2004). It shows a very
good performance equal to Puck’s criterion, but has the advantage that is needs less input
parameters. Furthermore, only physically meaningful input parameters are used.

Failure of textile composites is predicted with the failure criterion of Juhasz, in combina-
tion with the softening formulation of Puck.

9.1.3 Micromechanical Unit Cells

The micromechanical unit cell is used to estimate material parameters of UD-composites,
especially the hardening curves required as input for the nonlinear transversely material
model. Square, hexagonal and randomized fiber arrangement, but also analytical rules
of mixture, are compared and validated with experimental results from the WWFE. All
predictions yielded lower stiffness and strength (where possible) than the experiments.
The randomized fiber arrangement provides the best estimates for the elastic parameters,
that are in very good agreement with the experimental results, but the determination
of strength is problematic. A square fiber arrangement, in contrast, does not possess
transversely isotropic material behavior, but yields a better overall estimation than the
hexagonal fiber arrangement.

9.1.4 Mesomechanical Unit Cells

The material parameters of a textile lamina are determined with the mesomechanical
unit cell. Therefore, two modeling strategies are investigated, layer-based and textile-
layer homogenization. The difference between both strategies is the number of fiber
orientations that are included in the unit cell. An example for layer-based homogenization
is the presented unit cell of a non-crimp fabric that includes only a single layer of fibers
sharing the same orientation. Therefore, the inter-layer interactions are not captured very
well with this approach, but the analysis of failure can be carried out in great detail. In
the textile-layer homogenization one or more textile layers are discretized in one unit cell.
As an example two weft-knitted fabrics are discretized. The textile architecture and the
interactions between the layers are incorporated completely, but the behavior of the unit
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cell is likely to be anisotropic instead of orthotropic. Thus, more virtual tests are required
for an appropriate description of the material behavior and failure can be observed only
in a smeared fashion.

Due to the potential of more detailed failure analysis the layer-based homogenization is
favorable, but because the inter-layer interactions are compromised in this method, it does
not always give the best results.

9.1.5 Macroscale Computations

The material parameters determined with the mesomechanical non-crimp fabric unit cell
are validated through the simulation of two experimental tests. In a coupon test the pre-
dicted stiffnesses and strengths agree very well with the experimental results. Especially
the degradation of the coupon is captured excellently by the simulation.

In order to investigate the performance of the parameters in a three-dimensional stress
state with progressive damage a simulation of a 3-point bending test is compared to
experimental results. The predicted elastic parameters show excellent correspondence
with the experimental results, but the failure occurs early in the simulation after the first
plies have failed in FF mode. However, in this example it is clear that a better softening
formulation after FF is required, because the strengths are validated by the coupon test. In
contrast, the progressive damage after IFF is modelled outstandingly well, considering the
complex stress state and failure process in the specimen. Overall, the predicted material
parameters are in excellent agreement with the experimental results and the simulation
of progressive damage works very well.

9.2 Outlook

The macroscale simulations show that a nonlinear material model and an appropriate
softening model are needed for the orthotropic textile composite material. A validation
of the mesomechanical unit cell is difficult, because it can be validated over macroscale
simulations only that incorporate a number of other influences on the results. Therefore,
it would be an interesting prospect to produce test specimen in analogy to the mesome-
chanical unit cell, to validate it directly, i.e. a UD-layer with through-thickness stitches.
Another possibility of such mesoscale test specimens would be the inclusion of measured
imperfections in the unit cell and a comparison with test results. At least a sensitivity
analysis of the mesomechanical unit cell against imperfections should be performed in
order to investigate the possible effects of defects. Furthermore, detailed tests of damage
mechanisms in textile composites would help to improve the description of progressive
damage in textile composites. Therefore, smaller specimens with less layers than the pre-
sented 3-point-bending test should prove valuable. Further, tests with the Arcan test rig
developed by Hartung et al. (2007) could deliver useful experimental results.

An interaction of fiber-parallel stresses and inter-fiber failure would be a valuable improve-
ment of the invariant-based quadratic criterion (IQC). Furthermore, an incorporation of



9.2. Outlook 157

the in-situ effect in the softening formulation should improve the predictive capabilities
IQC for UD-laminates as well. Delamination, another important failure mode for UD-
composites, has to be included in the IQC and the softening formulation for a complete
description of composite failure. Therefore, a more sophisticated damage description,
including damage before failure would be a useful enhancement.
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Schürmann, H. (2007). Konstruieren mit Faser-Kunststoff-Verbunden (5 ed.). Berlin:
Springer.

Sickinger, C., & Herrmann, A. (2001). Structural stitching as a method to design high-
performance composites in future. In Proceedings techtextil symposium. Frankfurt
am Main: Messe Frankfurt.

Simo, J., & Hughes, T. (1998). Computational inelasticity. New York: Springer.
Smith, L. V., & Swanson, S. R. (1996). Strength design with 2-d triaxial braid textile

composites. Composites Science and Technology, 56, 359-365.
Spencer, A. (1987). Kinematic constraints, constitutive equations and failure rules for

anisotropic materials. In J. Boehler (Ed.), Applications of tensor functions in solid
mechanics (pp. 187–201). Springer.

Sun, C. T., & Vaidya, R. S. (1996). Prediction of composite properties from a represen-
tative volume element. Composites Science und Technology, 56, 171–179.

Takano, N., Uetsuji, Y., Kashiwagi, Y., & Zako, M. (1999). Hierarchical modelling of
textile composite materials and structures by the homogenization method. Modelling
Simul. Mater. Sci. Eng., 7, 207–231.

Tan, P., Tong, L., & Steven, G. P. (2000, March). Behavior of 3d orthogonal woven cfrp
composites. part ii. fea and analytical modeling approaches. Composites Part A:
Applied Science and Manufacturing, 31, 273-281.

Thom, H. (1999). Finite element modeling of plain weave composites. Journal of Com-
posite Materials, 33 (16), 1491–1510.

Truong, T. C., Vettori, M., Lomov, S., & Verpoest, I. (2005, September). Carbon compos-
ites based on multi-axial multi-ply stitched preforms. part 4. mechanical properties
of composites and damage observation. Composites Part A: Applied Science and
Manufacturing, 36, 1207–1221.



References 163

Tsai, G.-C., & Chen, J.-W. (2005, June). Effect of stitching on mode i strain energy
release rate. Composite Structures, 69, 1–9.

Tsai, S. W., & Wu, E. M. (1971). A general theory of strength for anisotropic materials.
Journal of Composite Materials, 5, 58–80.

Ulbricht, V., & Haasemann, G. (2007). Werkstoffverhalten und -modelle. In W. Hufenbach
(Ed.), Textile Verbundbauweisen und Fertigungstechnologien für Leichtbaustrukturen
des Maschinen- und Fahrzeugbaus. Dresden: SDV - Die Medien AG. (ISBN-13: 978-
3-00-022109-5)

VDI. (2006). Entwicklung von Bauteilen aus Faser-Kunststoff-Verbund, Berechnungen
[VDI-Richtlinien, VDI 2014, Blatt 3]. Düsseldorf: VDI-Verlag.

Vogler, M., Ernst, G., Hühne, C., & Rolfes, R. (2007). A transversely isotropic plasticity
model with damage for fiber-reinforced plastics and textile composites. In Nafems
seminar: Simulating composite: Materials and structures (pp. 1–14). Bad Kissingen.
(ISBN 978-1-874376-28-6)

Wang, Y. (2002, March). Mechanical properties of stitched multiaxial fabric reinforced
composites from mannual layup process. Applied Composite Materials, 9, 81–97.

Woo, K., & Whitcomb, J. (1994). Global/local finite element analysis for textile compos-
ites. Journal of Composite Materials, 28 (14), 1305–1321.

Woo, K., & Whitcomb, J. D. (1996, June). Three-dimensional failure analysis of plain
weave textile composites using a global/local finite element method. Journal of
Composite Materials, 30, 984–1003.



Lebenslauf

Persönliches

Name Gerald Ernst

Geburtstag 27.09.76

Geburtsort Göttingen

Staatsangehörigkeit deutsch

Familienstand ledig

Schulbildung

1983 – 1987 Hainbundschule Göttingen (Grundschule)

1987 – 1989 Orientierungsstufe Göttingen-Nord

1989 – 1996 Felix-Klein-Gymnasium Göttingen

Abschluß: Abitur (Note: 2,1)

Hochschulbildung

Okt. 1996 – Jan. 2002 Studium Bauingenieurwesen an der Universität Hannover

mit Vertiefungsrichtung Konstruktiver Ingenieurbau

Okt. 2001 – Dez. 2001 Diplomarbeit zum Thema

”‘Dynamische Untersuchungen von eingleisigen Eisenbahnbrücken

zur Beurteilung der Resonanzgefahr mit dem

Finite-Elemente-Programm SOFiSTiK”’ (Note: sehr gut)

Jan. 2002 Diplom (Gesamtnote: sehr gut)

Zivildienst

Apr. 2002 – Jan. 2003 Vogelwart beim Verein Jordsand am Rantumbecken Sylt

Wissenschaftliche Tätigkeiten

März 2003 – Jan. 2005 Wissenschaftlicher Mitarbeiter am Institut für Statik

Jan. 2005 – Juni 2008 Wissenschaftlicher Mitarbeiter am Institut für Statik und Dynamik

Mai 2006 – Aug. 2006 DAAD-Stipendium für Auslandsaufenthalt am Cooperative Research

Center for Advanced Composite Structures in Melbourne, Australien



Mitteilungen des
Instituts für Statik und Dynamik der
Leibniz Universität Hannover

1 R. Rolfes/

C. Hühne
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