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Universal atom interferometer 
simulation of elastic scattering 
processes
Florian Fitzek1,2, Jan‑Niclas Siemß1,2, Stefan Seckmeyer1, Holger Ahlers1, Ernst M. Rasel1, 
Klemens Hammerer2 & Naceur Gaaloul1*

In this article, we introduce a universal simulation framework covering all regimes of matter-wave 
light-pulse elastic scattering. Applied to atom interferometry as a study case, this simulator solves the 
atom-light diffraction problem in the elastic case, i.e., when the internal state of the atoms remains 
unchanged. Taking this perspective, the light-pulse beam splitting is interpreted as a space and time-
dependent external potential. In a shift from the usual approach based on a system of momentum-
space ordinary differential equations, our position-space treatment is flexible and scales favourably 
for realistic cases where the light fields have an arbitrary complex spatial behaviour rather than being 
mere plane waves. Moreover, the solver architecture we developed is effortlessly extended to the 
problem class of trapped and interacting geometries, which has no simple formulation in the usual 
framework of momentum-space ordinary differential equations. We check the validity of our model by 
revisiting several case studies relevant to the precision atom interferometry community. We retrieve 
analytical solutions when they exist and extend the analysis to more complex parameter ranges in 
a cross-regime fashion. The flexibility of the approach, the insight it gives, its numerical scalability 
and accuracy make it an exquisite tool to design, understand and quantitatively analyse metrology-
oriented matter-wave interferometry experiments.

The commonly used approach for treating light-pulse beam-splitter and mirror dynamics in matter-wave sys-
tems consists in solving a system of ordinary differential equations (ODE) with explicit couplings between the 
relevant momentum states.

This formulation starts by identifying the relevant diffraction processes and extracting their corresponding 
coupling terms in the ODE1,2. In the elastic scattering case, each pair of light plane waves can drive a set of two-
photon transitions from one momentum class j to the next neighboring orders j ± 2 . The presence of multiple 
couplings allows for higher order transitions and the system is simplified by choosing a cutoff omitting small tran-
sition strengths. This ODE approach works well for simple cases leading to analytical solutions in the deep Bragg 
and Raman-Nath regimes1,2. Using a perturbative treatement, it was generalised to the intermediate, so-called 
quasi-Bragg regime3. A numerical solution in this regime has been extended in the case of a finite momentum 
width4. In a different approach, Siemß et al.5 developed an analytic theory for Bragg atom interferometry based 
on the adiabatic theorem for quasi-Bragg pulses. Realistically distorted light beams or mean-field interactions, 
however, sharply increase the number of plane wave states and their couplings required for an accurate descrip-
tion. The formulation of the ODE becomes increasingly large and inflexible, with a set of coupling terms for each 
relevant pair of light plane waves.

Here, we take an alternative approach and solve the system in its partial differential equation (PDE) formula-
tion following the Schrödinger equation. This time-dependent perspective6 has several advantages in terms of 
ease of formulation and implementation, flexibility and numerical efficiency for a broad range of cases. Indeed, 
this treatment is valid for different types of beam splitters (Bloch, Raman-Nath, deep Bragg and any regime in 
between) and pulse arrangements. Combining successive light-pulse beam-splitters naturally promoted our solver 
to a cross-regime or universal atom interferometry simulator that could cope with a wide range of non-ideal 
effects such as light spatial distortions or atomic interactions, yet being free of commonly-made approximations 
incompatible with a metrological use.

The position-space representation seems underutilised in the treatment of atom interferometry problems in 
favor of the momentum-space description although several early attempts of using it were reported for specific 
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cases7–11. In this paper, we show the unique insights this approach can deliver and, contrary to widespread belief, 
its great numerical precision and scalability. In addition we illustrate our study with relevant examples from the 
precision atom interferometry field.

Theoretical model
Light‑pulse beam splitting as an external potential.  We start with a semi-classical model of Bragg 
diffraction, where a two-level atom is interacting with a classical light field1,2. This light field consists of a pair of 
two counter-propagating laser beams realised by a retro-reflection mirror setup for example. Assuming that the 
detuning of the laser light � is much larger than the natural line width of the atom, one may perform the adi-
abatic elimination of the excited state. This yields an effective Schrödinger equation for the lower-energy atomic 
state ψ(x, t) with an external potential proportional to the intensity of the electric field

with the two-photon Rabi frequency � and wave vector k = 2π/� in a simplified 1D geometry along the x-direc-
tion. For the present study, we consider a 87Rb atom that is addressed at the D2 transition with � = 780 nm result-
ing in a recoil frequency and velocity12 of ωr = �k2/2m = 2π · 3.8 kHz and vr = �k/m = 5.9 mm/s, respectively.

In the context of realistic precision atom interferometric setups, it is necessary to include Rabi frequencies 
�(x, t) and wave vectors k(x, t) which are space and time-dependent. This allows one to account for important 
experimental ingredients such as the Doppler detuning or the beam shapes including wavefront curvatures13–15 
and Gouy phases16–19. Moreover, this generalisation allows one to effortlessly include the superposition of more 
than two laser fields interacting with the atoms as in the promising case of double Bragg diffraction20–22, and to 
model complex atom-light interaction processes where spurious light reflections or other experimental imper-
fections are present23.

Atom interferometer geometries.  The light-pulse representation presented in the previous section is 
the elementary component necessary to generate arbitrary geometries of matter-wave interferometers operating 
in the elastic diffraction limit. Indeed, since the atom-light interaction in this regime conserves the internal state 
of the atomic system, a scalar Schrödinger equation is sufficient to describe the physics of the problem in contrast 
to the model adopted in Ref.10.

For example, a Mach–Zehnder-like interferometer geometry can be generated by a succession of π2 − π − π
2  

Bragg pulses (beam-splitter, mirror, beam-splitter pulses) of order n separated by a free drift time of T between 
each pair of pulses. In the case of Gaussian temporal pulses, this leads to a time-dependent Rabi frequency

where �bs , τbs and �m , τm are the peak Rabi frequencies and their respective durations associated to the beam-
splitter and mirror pulses, respectively. We numerically solve the corresponding time-dependent Schödinger 
equation using the split-operator method24 to propagate the atomic wave packets along the two arms. The popu-
lations in the two output ports |+� = |0�k� and |−� = |2n�k� are evaluated after the last recombination pulse 
waiting for a time of flight τToF long enough that the atomic wave packets spatially separate. They are obtained 
by the integration

where the integration domains extend over a space interval with non-vanishing probability density of the states 
|±� . These probabilities are further normalised to account for the loss of atoms to other parasitic momentum 
classes

Using Feynman’s path integral approach, the resulting phase shift between the two arms can be decomposed as25,26

The propagation phase is calculated by evaluating the classical action along the trajectories of the wave packet’s 
centers. The laser phase corresponds to the accumulated phase imprinted by the light pulses at the atom-light 
interaction position and time. Finally, the separation phase is different from zero if the final wave packets are 
not overlapping at the time of the final beam splitter, t = 2T.

To extract the relative phase �φ between the two conjugate ports and the contrast C, one can scan a laser 
phase φ0 ∈ [0, 2π] at the last beam splitter and evaluate the populations1 varying as
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The resulting fringe pattern is then fitted with �φ and C ≤ 1 as fit parameters. This method, analogous to experi-
mental procedures, allows one to determine the relative phase modulo 2π.

Results
Raman‑Nath beam splitter.  The Raman-Nath regime, characterised by a spatially symmetric beam split-
ting, is the limit of elastic diffraction for very short interaction times of τ ≪ 1√

2�ωr
 . The dynamics of the system 

can, in this case, be analytically captured following Refs.1,2

where gn(t) describes the amplitude of the momentum state |2n�k� and Jn the Bessel functions of the first kind. 
Such experiments are at the heart of investigations as the one reported in Ref.27 where a Raman-Nath beam 
splitter was used to initialise a three-path contrast interferometer offering the possibility of measuring the recoil 
frequency ωr.

To demonstrate the validity of our position-space approach, we contrast our results to the analytical ones 
obtained adopting the parameters of Ref.27. Figure 1 shows the outcome of a symmetric Raman-Nath beam split-
ter targeting the preparation of three momentum states: 50% into |0�k� and 25% in each of the | ± 2�k� momentum 
classes. As a feature of our solver, we directly observe the losses to higher momentum states ( p = ±4�k and 
p = ±6�k ) due to the finite pulse fidelity. An excellent agreement is found with the analytical predictions (green 
filled circles) of the populations of the momentum states.

Bragg‑diffraction Mach–Zehnder interferometers.  To simulate a Mach–Zehnder atom interferom-
eter based on Bragg diffraction, we consider a pair of two counter-propagating laser beams with a relative fre-
quency detuning �ω = ω1 − ω2 = 2nkvr and a phase jump φ0 ∈ [0, 2π] . This gives rise to the following run-
ning optical lattice

For sufficiently long atom-light interaction times, i.e. in the quasi- and deep-Bragg regimes2,3,28,29, the driven 
Bragg order n with momentum transfer �p = 2n�k is determined by the relative frequency detuning �ω of the 
two laser beams. The relative velocity between the initially prepared atom and the optical lattice is v = nvr . In the 
rest frame of the optical lattice, the atom has a momentum p = −n�k . The difference of kinetic energy between 
the initial ( p = −n�k ) and target state ( p = +n�k ) is vanishing and therefore this transition is energetically 
allowed and leads to a �p = n�k − (−n�k) = 2n�k momentum transfer.

(7)|gn(t)|2 = J2n(�t),

(8)VBragg (x, t) = 2��(t) cos2(k(x − nvrt)+
φ0

2
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Figure 1.   Probability density after a Raman-Nath pulse with � = 50 ωr , τ = 1 µ s and a rectangular temporal 
profile as implemented in27. This shall create a beam splitter of roughly 50% in |0�k� and 25% in each of the 
| ± 2�k� momentum states with an added time of flight of τToF = 20 ms to clearly separate the wavepackets 
in position space. The left and right panels show the position- and momentum-space probability density. The 
initial momentum width of the Gaussian wavepacket is chosen to be σp = 0.01 � k. Numerical results of this 
work (continuous blue lines) agree well with the analytical solution of the Raman-Nath regime (green dots, 
momentum space) given by the Bessel functions of the first kind.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:22120  | https://doi.org/10.1038/s41598-020-78859-1

www.nature.com/scientificreports/

We now realise beam splitters and mirrors by finding the right combination of peak Rabi frequency and inter-
action time (�, τ) , either by numerical population optimisation or analytically, when we work in the deep Bragg 
regime. Recent advances by Siemß et al.5 generalise this to the quasi-Bragg regime in an analytical description 
of Bragg pulses based on the adiabatic theorem. For the pulses used in this paper, the two approaches give the 
same result for the optimised Rabi frequencies and pulse durations.

In Fig. 2, we simulate a Mach–Zehnder geometry and illustrate the diffraction outcome by showing a space-
time diagram of the density distribution |ψ(x, t)|2 . For the parameters chosen here, a clear feature of the dynamics 
is the appearance of additional atomic channels after the mirror pulse, which can be attributed to the velocity 
selectivity arising from a pulse with a finite duration characterised by τ . The finite velocity acceptance can, indeed, 
be estimated over the Fourier width σf  of the applied pulse as

with σf = 1/(2πτ) and f being the frequency variable. This yields the velocity acceptance30

With an initial velocity width of the atomic probability distribution of σ atom
v = 0.1 vr , it is clear that velocity 

components with |v| = σ
pulse
v  will have a much smaller excitation probability than the components at the centre 

of the cloud, which leads to the characteristic double well densities of the parasitic trajectories.
With momenta pupper = 0�k and plower = 2�k , both parasitic trajectories still fulfill the resonance condition 

with the final Bragg beam splitter, which leads to the emergence of ten trajectories after the exit beam splitter. 
For a measurement in position space, it is now important that a sufficiently long time of flight τToF is applied 
that the ports of the Mach–Zehnder interferometer do not overlap with the parasitic ports and bias the relative 
phase measurement. For large densities, the parasitic trajectories at the Mach–Zehnder ports should not overlap 
since this may already lead to density interaction phase shifts Hint ∝ |ψ(x, t)|2 . To circumvent these problems it 

(9)F(�e
− t2

2τ2 ) =
√
2πτ 2�2e−2(π f τ)2 ,

(10)σ
pulse
v =

1

8ωrτ
vr = 0.11 vr .

Figure 2.   (a) Rabi frequency �(t) over time of a 2�k-Bragg Mach–Zehnder interferometer according to 
Eq. (2). (b) Corresponding space-time diagram of the probability density |ψ(x, t)|2 . The initial momentum 
width is chosen to be σp = 0.1 � k and the splitter and mirror Gaussian pulses have peak Rabi frequencies of 
� = 1.0573 ωr with pulse lengths of τbs = 25 µ s and τm = 50 µ s, respectively. The separation time between the 
pulses is T = 10 ms with a final time of flight after the exit beam splitter of τToF = 20 ms. Due to the velocity 
selectivity of the Bragg pulses, several trajectories can be observed after each pulse. Inset: Additional insight 
into the dynamics of the mirror pulse of the upper arm. The peak amplitude of the Gaussian pulse is reached 
at t = 11 ms. The interference fringes of the density plot indicate the overlap between the atoms in momentum 
class p = 2�k and the atoms lost due to velocity selectivity remaining at p = 0�k.
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is important to choose σ pulse
v ≫ σ atoms

v  . An example of state-of-the-art experiments23 with delta-kick collimated 
BEC sources31–36 uses σ atoms

v = 0.03 vr ≪ 0.14 vr = σ
pulse
v  , for strongly suppressed parasitic trajectories due to 

velocity selectivity.
Implementing high-order Bragg diffraction is a natural avenue to increase the momentum separation of an 

atom interferometer, and therefore its sensitivity. In Fig. 3, we run our solver to observe the population distribu-
tion across the different ports of a Mach–Zehnder configuration with Bragg orders up to n = 3 . This is done in 
a straightforward way by scanning the laser phase φ0 . We fit the data points corresponding to the population in 
the fast port |2�k� for the different Bragg orders according to Eq. (6) and observe a clear sinusoidal signal of the 
simulated fringes, as expected. The resulting contrasts and phase shifts are directly found by our theory model and 
numerical solver which include the ideal phase shifts commonly found25,26, and go beyond to comprise several 
non-ideal effects as (i) finite momentum widths, (ii) finite pulse timings and (iii) multi-port Bragg diffraction37,38 
and the resulting diffraction phase. The natural occurrence of these effects and the possibility to quantify them 
are a native feature of our simulator.

Symmetric double Bragg geometry.  Scalable and symmetric atom interferometers based on double 
Bragg diffraction were theoretically studied22 and experimentally demonstrated21. This dual-lattice geometry 
has particular advantages, including an increased sensitivity due to the doubled scale factor compared to single-
Bragg diffraction, as well as an intrinsic suppression of noise and certain systematic uncertainties due to the 
symmetric configuration21. Combining this technique with subsequent Bloch oscillations applied to the two 
interferometer arms led to reaching momentum separations of thousands of photon recoils as was recently 
shown in Ref.23.

In double Bragg diffraction schemes, two counter-propagating optical lattices are implemented in such a 
way that the recoil is simultaneously transferred in opposite directions, leading to a beam splitter momentum 
separation of �p = 4n�k21,22. To extend our simulator to this important class of interferometers, we merely have 
to add a term to the external potential

The procedures of realising a desired 4n�k momentum transfer, as well as mirror or splitter pulses, are identical 
to the case of single-Bragg diffraction. A simple scan of the Rabi frequency and pulse timings was enough to 
obtain a full double Bragg interferometer as shown in Fig. 4. The different resulting paths are illustrated in this 
space-time diagram of the density distribution |ψ(x, t)|2 . Similarly to the single-Bragg Mach–Zehnder interfer-
ometer, we observe additional parasitic interferometers due to the finite velocity filter of the Bragg pulses after 
the mirror pulse of the interferometer. Due to a finite fidelity of the initial beam splitter, some atoms remain in 
the |0�k� port and recombine at the last beam splitter with the trajectories of the interferometer. In a metrological 

(11)Vdouble Bragg (x, t) = 2��(t)(cos2(k(x − nvrt))+ cos2(k(x + nvrt))).
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Figure 3.   Scan of Mach–Zehnder interferometer phase for different Bragg transition orders of 2�k (red dots), 
4�k (green dots) and 6�k (blue dots). The phase shift is applied as a laser phase jump φ0 ∈ [0, 2π] at the last 
Bragg pulse. The lengths of the Gaussian splitting and mirror pulses are τbs = 25 µ s and τm = 50 µ s, respectively. 
The initial momentum width of the atomic sample is σp = 0.01 � k. The corresponding Rabi frequencies for the 
higher order Bragg transitions were found by optimising for an ideal 50 : 50 population splitting of the π

2
 pulse. 

This leads to �4�k = 3.7 ωr and �6�k = 8.4 ωr . The Rabi frequency for the 2�k transition is �2�k = 1.0573 ωr . 
The solid lines are the respective fringe scan fits from which the phase shifts and contrasts are directly extracted.
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study, these effects are highly important to quantify. Our simulator gives access to all the quantitative details of 
such a realisation in a straightforward fashion.

Gravity gradient cancellation for a combined Bragg and Bloch geometry.  Precision atom inter-
ferometry-based inertial sensors are sensitive to higher order terms of the gravitational potential, including 
gravity gradients. In particular, for atom interferometric tests of Einstein’s equivalence principle (EP), grav-
ity gradients pose a challenge by coupling to the initial conditions, i.e. position and velocity of the two test 
isotopes39. A finite initial differential position or velocity of the two species can, if unaccounted for, mimic a 
violation of the EP. By considering a gravitational potential of the form

where Ŵ = Ŵxx is the gravity gradient in the direction normal to the Earth’s surface, the relative phase of a freely 
falling interferometer can be calculated as40

with keff = 2nk.
In Ref.40, it was shown that introducing a variation of the effective wave vector �keff = Ŵkeff T

2/2 at the π 
pulse can cancel the additional phase shift due to the gravity gradient. This was experimentally demonstrated 
in Refs.41,42.

(12)V(x) = −mgx −
1

2
mŴx2,

(13)�φ = keff |g − aBragg |T2 + keff Ŵ(x0 + v0T)T
2,

Figure 4.   (a) Rabi frequency �(t) over time of a symmetric double Bragg interferometer according to Eq. (2). 
(b) The corresponding probability density |ψ(x, t)|2 is plotted for an initial momentum width of σp = 0.1 � k. 
The timings of the Gaussian splitter and mirror pulses are set to τbs = 25 µ s and τm = 50 µ s, respectively. The 
corresponding Rabi frequencies are found by optimising the desired population transfer. The first π

2
 pulse 

corresponds to a 2�k transfer in two directions, realised by two counter-propagating optical lattices which 
results in a 4�k separation between the two interferometer arms. The mirror pulse is a 4�k Bragg transition 
with a Rabi frequency of � = 1.9 ωr such that both arms make a transition from | ± 2�k� → | ∓ 2�k� . The 
last recombination pulse now realises a 50 : 50 split of the upper trajectory to | − 2�k� and |0�k� and the lower 
trajectory to | + 2�k� and |0�k� . This leads to a final population of 25% in the | ± 2�k� ports and 50% in the |0�k� 
port. The separation time between the pulses is T = 10 ms with a final time of flight after the exit beam splitter 
of τToF = 20 ms. Due to velocity selectivity of the Bragg pulses and a non-ideal fidelity of the initial beam 
splitter pulse, several parasitic interferometers can be observed.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:22120  | https://doi.org/10.1038/s41598-020-78859-1

www.nature.com/scientificreports/

The same principle applies to the gradiometer configuration of left panel in Fig. 5 where the effect of a gravity 
gradient is compensated by the application of a wave vector correction. This is reminiscent of another experimen-
tal cancellation of the gravity gradient phase shifts41. In our example, we first consider a set of two Mach–Zehnder 
interferometers vertically separated by h = 2 m, realised with 4�k Bragg transitions where the atoms start with 
the same initial velocities v0 . Choosing a Doppler detuning according to aBragg = g , the gradiometric phase reads

By scanning the momentum of the applied π pulse, one can compensate the gradiometric phase. This is observed 
in our simulations at the analytically predicted value of �keff = Ŵkeff T

2/2 (red dashed curve crossing the zero 
horizontal line).

It is particularly interesting to use our simulator to find this correction phase in the context of more chal-
lenging situations, such as a combined scalable Bragg and Bloch Mach–Zehnder interferometer or a symmetric 
Bloch beam splitter43 where analytic solutions are not easily found.

Bloch oscillations can be used to quickly impart a momentum of p = 2nBloch�k on the atoms44,45. This adi-
abatic process can be realised by loading the atoms into a co-moving optical lattice, then accelerating the optical 
lattice by applying a frequency chirp and finally by unloading the atom from the optical lattice. In our model, 
this corresponds to the following external potential

(14)� = 4kŴhT2.

(15)VBloch(x, t) = 2��(t) cos2(k(x − x(t)))

(16)x(0) = 0

(17)ẋ(0) = 2nvr

(18)ẍ(t) =







0 0 < t < τload
2nBlochvr
τchirp

τload < t < τload + τchirp

0 τload + τchirp < t < τload + τchirp + τunload

Figure 5.   Gravity gradient cancellation in the case of a combined Bragg-Bloch gradiometer scheme. (a) 
Schematic of the Bragg-Bloch interferometer geometry with a baseline of 2 m. This configuration allows one to 
independently imprint momenta of n�k Bragg and nBloch�k . The Bragg mirror pulse is momentum-adapted to 
cancel the gravity gradient phase. (b) Gradiometric phase for a 4�k (red dots) Bragg momentum transfer and a 
2�k Bragg + 2�k Bloch Mach–Zehnder interferometer (blue dots). For both interferometers, the Gaussian pulse 
lengths of the splitting and mirror pulses are τbs = 25 µ s and τm = 50 µ s, respectively. The initial momentum 
width of the atomic sample is σp = 0.01 � k. The corresponding Rabi frequencies for the higher order Bragg 
transitions were found by optimising for an ideal 50 : 50 population splitting of the π

2
 pulse, which leads to a 

Rabi frequency of �4�k = 3.7 ωr . For the (2+ 2)�k Bragg+Bloch geometry, the Bloch sequence is implemented 
with an adiabatic loading time of τload = 0.5 ms, a frequency chirp time of τchirp = 0.5 ms during which the 
momentum transfer occurs and an adiabatic unloading time of τunload = 0.5 ms. The Rabi frequency of the 
Bloch lattice is � = 4 ωr . For the 4�k Bragg geometry we find a vanishing gradiometer phase at �keff = Ŵ

2
keff T

2 
which agrees with the analytical calculation40. For the shell (2+ 2)�k Bragg+Bloch geometry we find a phase 
shift of � = −3 mrad at �keff = Ŵ

2
keff T

2 due to the nontrivial correction of the space-time area of the 
(2+ 2)�k Bragg+Bloch compared to the 4�k Bragg geometry. The dashed lines are a guide to the eye.
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where τload , τchirp and τunload are the durations of the lattice loading, acceleration and unloading, respectively.
By ramping up the co-moving optical lattice, the atoms are loaded into the first Bloch band with a quasimo-

mentum q = 0 . An acceleration of the optical lattice acts as a constant force on the atoms which linearly increases 
the quasimomentum over time. When the criterion for an adiabatic acceleration of the optical lattice is met, the 
atoms stay in the first Bloch band and undergo a Bloch oscillation, which can be repeated nBloch times leading to 
a final momentum transfer of �p = 2nBloch�k.

The π pulse correction �keff = Ŵkeff T
2/2 is proportional to the space-time area ABragg = �keff T

2/m of the 
underlying 2n�k Mach–Zehnder geometry and does not compensate the gravity gradient effects in the Bloch 
case. Analysing the space-time area ABragg+Bloch immediately shows a non-trivial correction compared to ABragg . 
The suitable momentum compensation factor is, however, found using our solver at the crossing of the dashed 
blue line and the vertical zero limit ( �k

Bragg+Bloch
eff = 0.932 �k

Bragg
eff  ). This straightforward implementation of our 

toolbox in a rather complex arrangement is promising for an extensive use of this framework to design, interpret 
or propose advanced experimental schemes.

Trapped interferometry of an interacting BEC.  Employing Bose–Einstein condensate (BEC) 
sources46,47 for atom interferometry34,48,49 has numerous advantages such as the possibility to start with very nar-
row momentum widths σp31–36, which enables high fidelities of the interferometry pulses4. For interacting atomic 
ensembles, it is necessary to take into account the scattering properties of the particles. The Schrödinger equa-
tion is not anymore sufficient to describe the system dynamics and the ODE approach becomes rather complex 
to use as shown in the section on scalability and numerics. We rather generalise our position-space approach and 
consider a trapped BEC atom interferometer including two-body scattering interactions described in a mean-
field framework. The corresponding Gross–Pitaevskii equation reads50

where the quantum gas of N atoms is trapped is a quasi-1D guide aligned with the interferometry direction and 
characterised by a transverse trapping at an angular frequency ω⊥ much stronger than the longitudinal one. 
These interactions can effectively be reduced in 1D to a magnitude of g1D = 2�asω⊥ . For our calculation, we 
set the s-wave scattering length of 87 Rb to one Bohr radius, i.e. as = a0 = 5.3× 10−11 m. Experimentally, such a 
value can be realised using a Feshbach resonance technique51. This model is well valid in the weakly interacting 
limit, i.e. when asN |ψ |2 ≪ 152,53.

All atom interferometric considerations mentioned earlier, like the Bragg resonance conditions, construc-
tion of interferometer geometries, the implementation of Doppler detunings, phase calculations and population 
measurements are also valid in this case without any extra theoretical effort. The non-linear Gross–Pitaevskii 
equation is solved following the split-operator method as in the Schrödinger case24.

If the atom interferometer is perfectly symmetric in the two directions of the matterwave guide, no phase 
shift should occur. In realistic situations, however, the finite fidelity of the beam splitters creates an imbalance 
δN of the particle numbers between the two interferometer arms. The phase shift in this case can be related to 
the differential chemical potential by

We illustrate the capability of our approach to quantitatively predict this effect by contrasting it to the well-known 
treatment of this dephasing. Following Ref.48, we introduce δN  = 0 and analyse the dephasing by using the 1D 
Thomas–Fermi chemical potential of the harmonic oscillator potential

The + and − signs refer here to the arms 1 and 2, respectively. We assume the Thomas–Fermi radii before and 
after the atom-light interaction to be approximately the same. To this end, one needs to introduce the correction 
factor of 1/

√
2 which is a direct consequence of

Using Eq. (21), one finds a phase shift of
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A Taylor expansion to second order in the δN/N leads to the following phase shift formula

One would retrieve the same expression of the dephasing, up to second order in δN/N , if one would use the 
chemical potential of a uniform BEC

where L denotes the half-width of the BEC, simply by replacing L = RTF , as assumed by Ref.48. In Fig. 6a, the 
mean-field shift is plotted as a function of the atom number imbalance in the two cases of the numerical solu-
tion of the Gross–Pitaevskii equation and with the analytical model using the Thomas–Fermi approximation. 
It is worth noting that the dephasing is accompanied by a loss of contrast consistent with previous theoretical 
studies54. We performed a numerical optimisation to find the maximal particle number N up to which we find 
a contrast of C > 99% , which is N ≤ 6 · 104 in this case. In Fig. 6b, the absolute value of the difference between 
the numerical and the analytical solutions of �φ is plotted. For an imbalance of the order of 10% , we observe an 
agreement at the mrad level. We could point to different possible sources for the relative phase difference. First, 
the assumptions of the Thomas–Fermi approximation at the heart of the analytical method are not necessarily 
satisfied here with N ≤ 6 · 104 . Moreover, the analytical treatment neglects all time-dependent effects occurring 
during the light-atom interactions at the mirror and beam-splitter pulses. These effects, combined with a non-
vanishing mean-field would lead to additional phase shifts and shape deformations of the wave functions that 
are absent from a simple Thomas–Fermi assumption.

Scalability and numerics
Numerical accuracy and precision.  To gain a better understanding of the numerical accuracy of the 
simulations, we plot in Fig. 7 the dependency of the phase shift |�φ| on the momentum width of the atomic 
sample σp for a 2�k Bragg Mach–Zehnder interferometer. We study two realisations which differ in the peak 
Rabi frequency with corresponding pulse lengths to perform beam splitter and mirror pulses. For both cases we 
observe a similar characteristic qualitative behaviour of |�φ| scaling with σp . Going to smaller initial momen-
tum widths systematically decreases the phase shift until it reaches a plateau of 1× 10−7 rad for � = 1.06ωr and 
2.5× 10−14 for � = 0.53ωr.

(25)�φTF
MF =

2T

�

g1D

2RTF
δN +O(δN/N)3.

(26)µ
uniform
arm1/arm2 =
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N
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,

Figure 6.   (a) Mean-field-driven phase shifts as a function of the particle imbalance δN . The analytic solution 
is given by Eq. (24) (blue line). For the numerical solution (orange dots), we modeled the imbalance by 
considering a first π

2
 beam-splitter with a finite fidelity. The Gaussian splitter and mirror pulses have peak Rabi 

frequencies of � = 1.0573 ωr with pulse lengths of τbs = 25 µ s and τm = 50 µ s, respectively. The transverse 
trapping frequency is realised with an angular frequency of 2π × 50 Hz and the initial trap frequency in which 
the BEC is condensed is set to 2π × 1 Hz with a number of atoms of N = 6 · 104 and a scattering length of 
as = a0 with a0 being the Bohr radius. (b) Absolute value of the phase difference between the analytic solution 
and the numerical simulation. Discrepencies with respect to the analytical model stem from the assumptions of 
the Thomas–Fermi approximation being not satisfied here (see main text).
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This qualitative behaviour can be explained by considering the effect of parasitic trajectories. In Fig. 2 it is 
clearly visible that after the time of flight of τToF = 2T , there is no clear separation between the parasitic trajec-
tories and the main ports of the Mach–Zehnder interferometer, which leads to interference between them. We 
choose the integration borders by setting up a symmetric interval around the peak value of each of the ports 
(see Eq. (3)), ensuring a minimal influence of the parasitic atoms on the interferometric ports. Nevertheless, 
the interference between the interferometric ports and the parasitic trajectories modifies the measured particle 
number and therefore also the inferred relative phase. This effect decreases with smaller initial momentum 
width since less atoms populate the parasitic trajectories overlapping with the main ports, which explains the 
decrease of relative phase |�φ| between σp = 0.1�k to σp = 0.05�k ( � = 1.06 ωr ) and σp = 0.03�k ( � = 0.53 ωr ). 
Another important contribution to the relative phase |�φ| which is not captured by Feynman’s path integral 
approach25,26 is the diffraction phase, which is fundamentally linked to the excitation of non-resonant momen-
tum states37,38. Using smaller Rabi frequencies leads to a reduced population of non-resonant momentum 
states (after a beam splitter pulse we find P(−2�k, � = 1.06ωr)+ P(4�k, � = 1.06ωr) = 1.3× 10−7 and 
P(−2�k, � = 0.53ωr)+ P(4�k, � = 0.53ωr) = 1.9× 10−18 ) and therefore to a reduced diffraction phase 
which explains that operating a Mach–Zehnder interferometer at � = 0.53 ωr leads to a much smaller residual 
phase shift than at � = 1.06 ωr.

These results indicate that our simulator reaches at least a relative phase accuracy at the level of 2.5× 10−14 
rad. It is worth mentioning, that the numerical parameters chosen to reach this performance are very accessible 
on modestly powerful desktop computers. The computation took τCPUtime = 12.7 s on an Intel Xeon X5670 pro-
cessor using four cores (2.93 GHz, 12 MB last level cache). Modeling precision atom interferometry problems 
with this method is therefore a practical, flexible and highly accurate approach. Using improved resolutions 
in position and time or higher order operator splitting schemes55 leads to even better numerical precision and 
accuracy.

Numerical convergence.  To analyse the numerical convergence as well as the connected numerical preci-
sion and accuracy of the split-operator method applied to the previously presented systems, we simulate three 
different interferometer settings for different space and time grids. We consider a 2�k Mach–Zehnder interfer-
ometer, a 2�k Mach–Zehnder interferometer in a waveguide and as a last example a (2+ 2)�k Bragg+Bloch 
Mach–Zehnder interferometer in order to quantify the necessary resolution and grid sizes that can be derived 
from these results. In Figs. 8 and 9 we extract the relative phase over successively decreasing spatial and temporal 
steps and we compare them to simulations with sufficiently fine spatial and temporal resolutions by plotting the 
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Figure 7.   Phase shift of a 2�k Mach–Zehnder interferometer as a function of the initial momentum width of an 
atomic sample. We evaluate the phase shift for pulse lengths of τbs = 25 µ s and τm = 50 µ s (blue dots) and for 
τbs = 50 µ s and τm = 100 µ s (red dots), using peak Rabi frequencies of �25µs = 1.06 ωr and �50µs = 0.53 ωr . 
The dashed lines are a guide to the eye. We find a systematic decreasing behaviour of the relative phase 
offset |�φ| starting from an initial momentum width of σp = 0.1�k (far right) to σp = 0.05�k (red dots) and 
σp = 0.03�k (blue dots). Reaching those critical initial momentum widths both curves show fixed relative 
phase offsets |�φ| , which in the case of the interferometer with smaller Rabi frequency of � = 0.53ωr (red 
dots) reaches a value of 2.5× 10−14 rad (see text). The numerical simulations were performed with 65,536 
grid points, an interaction time step of dtint = 1 µ s and a free evolution time step of dtfree = 10 µ s, leading 
to a computational time of τCPUtime = 12.69 s on four cores of an Intel Xeon X5670 processor with 2.93 GHz 
frequency and 12 MB of cache.
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absolute value of the difference of the relative phases, i.e. |�φ −�φ(dt = 4 ns)| and |�φ −�φ(dx = 0.01�)| . 
For the presented cases we compare to dt = 4 ns and dx = 0.01� . The choice of the steps fulfilling the necessary 
resolution is motivated in the following, relating them to the physical quantities of the problem (optical lattice 
and atomic wavepacket).

The fast Fourier transform (FFT) efficiently switches between momentum and position representations to 
apply kinetic and potential propagators. The corresponding position and momentum grids are defined by the 
number of grid points Ngrid and the total size of the position grid �x as

where dp and dx are the steps in momentum and position, respectively, and �p the total size of the momentum 
grid.

To resolve a finite momentum width of the atomic cloud we are restricted to ( � = 780 nm)

which sets a bound to the size of the position grid. Finally, �x has to be chosen according to the maximal separa-
tion of the atomic clouds �xsep . With this we find

To include all momentum orders necessary to simulate the considered atom interferometric sequences, we are 
naturally bound by

Hence, we find that
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Figure 8.   Numerical convergence analysis of three different interferometer realisations given by a 2�k Mach–
Zehnder interferometer (blue and orange dots corresponding to the 0�k and 2�k ports), a 2�k Mach–Zehnder 
interferometer in a waveguide (green dots) and a (2+ 2)�k Bragg+Bloch Mach–Zehnder interferometer (red 
dots). We analyse the numerical convergence behaviour when changing the position step dx expressed in 
units of � = 780 nm of the numerical simulation using the third-order split-operator method with temporal 
steps of dtint = 1µs and dtfree = 10µs . The Gaussian splitter and mirror pulses have peak Rabi frequencies 
of � = 1.0573 ωr with pulse lengths of τbs = 25 µ s and τm = 50 µ s, respectively. The Bloch sequence is 
implemented with an adiabatic loading time of τload = 0.5 ms, a frequency chirp time of τchirp = 0.5 ms during 
which the momentum transfer occurs and an adiabatic unloading time of τunload = 0.5 ms. The Rabi frequency 
of the Bloch lattice is � = 4 ωr . In the case of the 2�k Mach–Zehnder and (2+ 2)�k Bragg+Bloch Mach–
Zehnder interferometers, we use an initial momentum width of the atomic sample of σp = 0.01 � k. In the case 
of the 2�k Mach–Zehnder interferometer in a waveguide the transverse trapping frequency is realised with an 
angular frequency of 2π × 50 Hz and the initial trap frequency in which the BEC is condensed is set to 2π × 1 
Hz with a number of atoms of N = 6 · 104 and a scattering length of as = a0 with a0 being the Bohr radius.
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which is the natural condition imposed by the necessity of resolving the atomic dynamics in the optical lattice 
nodes and anti-nodes of the Bragg and Bloch beams.

The absence of data points of the (2+ 2)�k Bragg+Bloch Mach–Zehnder interferometer in Fig. 8 shows the 
limits given by Eq. (31). Choosing position steps at dx = 0.07 � leads to a maximal computed momentum of 
± 7.1 �k , which results in the impossibility to find probabilities at 8�k . For this specific interferometer, however, 
it is critical to resolve those momenta, since they are residually populated during the atom-light interaction 
processes. Imposing that the position step is roughly one order of magnitude smaller than the wavelength 
( dx � 0.06 � ) results in a reasonable momentum truncation and resolution of the light potential and therefore 
in the convergence of the numerical routine. Additionally, we can observe that reaching spatial resolutions of 
dx = 0.01� , one finds, for all three studied cases, satisfying numerical accuracy and precision which in the worst 
case is approximately 1× 10−9 rad for the (2+ 2)�k Bragg+Bloch Mach–Zehnder interferometer.

The typical time scales we need to consider are set on the one hand by the velocities of the optical lattice beams 
and the atomic cloud, and on the other hand by the duration of the atom-light interaction τ . The beams, as well 
as the atomic cloud, move with velocities which are proportional to the recoil velocity vr . Given that we want to 
drive Bragg processes of the order of n, we find the following bound on the time step dt

The typical duration of a pulse in the quasi-Bragg regime is typically adapted to the momentum width due to the 
spectral properties of the finite pulse. Here, we assume a lower bound of τ = 10µ s, which leads to dt < τ . It is 
worth noting that this time step is only necessary during the atom-light interaction. One can simulate the free 
evolution between the pulses with a much larger time step (without external and interaction potentials a single 
step suffices) or using scaling techniques34,56–59.

Figure 9 shows that depending on the specific form of the simulated light potential or the consideration of 
two-particle interactions, we observe a characteristic convergence behaviour which we directly connect to the 
propagation error of the split-operator routine55,60. For the 2�k Mach–Zehnder interferometer one can observe 
the already found level of convergence around 1× 10−13 rad (see Fig. 7). Interestingly, the 2�k port reaches a 
level of 1× 10−13 rad at a time step of dt ≈ 0.1 µ s, whereas the 0�k port already convergences to that level at a 
time step of dt = 1 µ s. Note, that the diffraction phase and therefore the relative phase in the slow port vanishes 
but reaches a finite value of approximately 1× 10−7 rad in the fast port37,38 (see Fig. 7). The next analysed case is 
the 2�k Mach–Zehnder interferometer in a waveguide whereby introducing the non-linear interaction term (see 
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Figure 9.   Numerical convergence analysis of three different interferometer realisations given by a 2�k Mach–
Zehnder interferometer (blue and orange dots corresponding to the 0�k and 2�k ports), a 2�k Mach–Zehnder 
interferometer in a waveguide (green dots) and a (2+ 2)�k Bragg+Bloch Mach–Zehnder interferometer (red 
dots). We analyse the numerical convergence behaviour when changing the temporal step dt of the numerical 
simulation using the third-order split-operator method with a spatial step of dx = 4× 10−2

� . The same 
parameters as Fig. 8 are used.
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Eq. (20)) one can observe a more demanding convergence behaviour, leading to an initial precision of 1 µrad at 
dt = 1 µ s, which converges to 1× 10−10 rad at a time step of dt ≈ 10−8 s. Introducing additional Bloch oscil-
lations shifts the convergence curve again by two orders of magnitude at a minimal time step of dt = 1 µ s and 
reaches a level of approximately 1 µrad at dt = 10−8 s. Note that the precision and accuracy of the split-operator 
algorithm strongly depends on the potential that is simulated60 and that in the case of a Bloch oscillation the 
optical potential linearly changes its velocity, where in the case of a Bragg transition the optical lattice moves 
with a constant velocity during the atom-light interaction process. Additionally, the atom-light interaction time 
of a Bloch oscillation is typically one order of magnitude larger compared with a Bragg transition which explains 
the need for finer temporal grids in order to achieve reasonable precision and accuracy.

Time complexity analysis.  In this section, we compare the time complexity behaviour of the commonly-
used method of treating the beam splitter and mirror dynamics given by the ODE approach with the PDE for-
mulation presented in this paper, based on a position-space approach to the Schrödinger equation. To assess the 
time complexity of the ODE treatment, we re-derive it from the Schrödinger equation

We decompose the wave function in a momentum state basis as done in Refs.2–4

where j denotes the momentum orders considered and δ the discrete representation of momenta in the interval 
[kj − k/2, kj + k/2] which captures the finite momentum width of the atoms around each momentum class kj . 
Making the two exponential terms appear in cos2(kx) , one obtains

which is a set of Neq coupled ordinary differential equations. This number Neq of equations to solve is equal to 
NjNδ , set by the truncation condition restricting the solution space to Nj momentum classes, each discretised in 
Nδ sub-components. Using standard solvers for such systems as Runge-Kutta, multistep or the Bulirsch–Stoer 
methods61, we generally need to evaluate the right hand side of the system of equations over several iterations. 
With Neq differential equations, where each one has only two coupling terms, one finds a time complexity of 
O(Neq).

In Fig. 10 we present a visualisation of different possible momentum couplings starting from 0�k to other 
momentum components. One starts with only three momentum states and two coupling elements in Fig. 10a 
corresponding to a vanishing momentum width ( δ = 0 in Eq. (35)). If the momentum width is introduced 
(Fig. 10b), the number of coupling elements increases since every δ sub-momentum class of j is connected to 
the same sub-momentum class of j − 2 and j + 2 as suggested by Eq. (35). In order to reduce visual complexity 
we are only showing couplings that start from the 0�k wavepacket, while dropping coupling elements starting 
from ±2�k . We also fixed the number of momentum states per integer momentum class kj to three, which in a 
realistic example is at least an order of magnitude larger.

In a next step, the coupling terms are calculated for more general potentials with time and space-dependent 
Rabi frequencies �(x, t) and wave vectors k(x, t). For this purpose, the momentum-space representation of 
the Schrödinger equation is more appropriate and can be written for the Fourier transform of the atomic wave 
function g(p, t)

where

Expressing the wave function in momentum space gives

Discretising p → (j + δ)�k and p′ → (l + γ )�k , one finds

where l and γ span the same indices ensembles as j and δ . The new equations to solve read
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which yields the necessary momentum couplings for an arbitrary potential V(x, t). In the worst case, the sum in 
Eq. (40) runs over Neq nonzero entries ( NlNγ = NjNδ = Neq ) which leads to a time complexity of O(N2

eq) . This, 
however, is an extreme example that contrasts with commonly operated precision interferometric experiments 
since it would correspond to white light with speckle noise. Realistic scenarios rather involve time-dependent 
potentials with a smaller number of momentum couplings, i.e. Neq ≫ #coupling terms � 2 as would be the case 
in Fig. 10c. To evaluate the momentum couplings, it is necessary to calculate the integral F(p, p′, t) at each time 
step using the FFT, which leads to a final time complexity class for solving the ODE of O(Neq logNeq).

The next important generalisation aims to include the effect of the two-body collisions analysed in the mean-
field approximation, i.e. Hint = g1D|ψ(x, t)|2 . In this case, the equation describing the dynamics of the system 
and the couplings can be written as

where ν and o are running indices over the same values as l and γ . One ends up with Neq differential equations 
where each has more than N2

eq coupling terms, and finds a time complexity class of O(N3
eq) . This shows the growth 

in numerical operations of the ODE treatment as reflected by the number of couplings in Fig. 10d.
We analyse now the time complexity class for the PDE approach, using the split-operator method24. Based on 

the application of the FFT, it is known that the complexity class of this method is scaling as O(Ngrid logNgrid) , 
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Figure 10.   Visualisation of different momentum couplings from the 0�k momentum wavepacket 
corresponding to different levels of complexity. (a) Zero momentum width and two coupling elements from 
0�k to ±2�k . (b) Finite momentum widths with coupling elements for each momentum component in the 
0�k wavepacket to the corresponding momentum component in the ±2�k wavepackets with a momentum 
difference for each transition of �p = 2�k . The different colours indicate the separate momentum subspaces in 
which transitions can occur. (c) Finite momentum widths with multiple possible coupling elements from the 
0�k wavepacket to the ±2�k wavepacket with a broadening of the possible momentum difference �p . (d) Finite 
momentum widths with higher order coupling elements from the 0�k wavepacket to momentum components of 
the ±4�k, ±6�k, . . . wavepackets.
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where Ngrid is the number of grid points in the position or momentum representations. Since the discretisation 
of the problem for the ODE and PDE (Schrödinger equation) approaches is roughly the same ( Neq ≈ Ngrid ), a 
direct comparison between the two treatments is possible.

The time complexity analysis is summarised in Table 1. It shows that the standard ODE approach is only 
better suited in the case of ideal light plane waves. In every realistic case where the light field is allowed to be 
spatially inhomogeneous, the amount of couplings increases and it is preferable to employ the PDE approach 
with a scaling of O(Ngrid logNgrid) , independently of any further complexity to be modelled.

Conclusion
In this paper, we have shown that the position-space representation of light-pulse beam splitters is quite powerful 
for tackling realistic beam profiles in interaction with cold atom ensembles. It was successfully applied across 
several relevant regimes, geometries and applications. We showed its particular fitness in treating metrologically-
relevant investigations based on atomic sensors. Its high numerical precision and scalability makes it a flexible 
tool of choice to design or interpret atom interferometric measurements without having to change the theoretical 
framework for every beam geometry, dimensionality, pulse length or atomic ensemble property. We anticipate 
the possibility of accurately implementing this approach to analyse important systematic effects in the field 
of precision light-pulse matter-wave interferometry such as the ones related to wavefront aberrations, large 
momentum transfer and inhomogeneity and fluctuations of the Rabi pulses. Finally, we would like to highlight 
the possibility to generalise this method to Raman or 1-photon transitions if we account for the internal state 
degree of freedom change during the diffraction.
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